File: node74.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (476 lines) | stat: -rw-r--r-- 15,570 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Floating Point Arithmetic</TITLE>
<META NAME="description" CONTENT="Further Details: Floating Point Arithmetic">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node73.html">
<LINK REL="up" HREF="node73.html">
<LINK REL="next" HREF="node75.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5230"
 HREF="node75.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5224"
 HREF="node73.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5220"
 HREF="node73.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5226"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5228"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5231"
 HREF="node75.html">How to Measure Errors</A>
<B> Up:</B> <A NAME="tex2html5225"
 HREF="node73.html">Sources of Error in</A>
<B> Previous:</B> <A NAME="tex2html5221"
 HREF="node73.html">Sources of Error in</A>
 &nbsp <B>  <A NAME="tex2html5227"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5229"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03411000000000000000"></A><A NAME="secbackgroundfloatingpoint"></A>
<BR>
Further Details:  Floating Point Arithmetic
</H2>

<P>
<A NAME="9732"></A>
<A NAME="9733"></A>
Roundoff error is bounded in terms of the <EM>machine precision</EM>
<IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">,<A NAME="9735"></A><A NAME="9736"></A>
which is the smallest value satisfying
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| fl(a \oplus b ) - (a \oplus b ) | \leq \epsilon \cdot | a \oplus b | \; \; ,
\end{displaymath}
 -->


<IMG
 WIDTH="253" HEIGHT="31" BORDER="0"
 SRC="img264.png"
 ALT="\begin{displaymath}
\vert fl(a \oplus b ) - (a \oplus b ) \vert \leq \epsilon \cdot \vert a \oplus b \vert \; \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>a</I></B> and <B><I>b</I></B> are floating-point numbers<A NAME="9737"></A>,
<IMG
 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img265.png"
 ALT="$\oplus$">
is any one of the four operations <B>+</B>, <B>-</B>, <B> x </B> and <IMG
 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img266.png"
 ALT="$\div$">,
and 
<!-- MATH
 $fl(a \oplus b)$
 -->
<IMG
 WIDTH="72" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img267.png"
 ALT="$fl(a \oplus b)$">
is the floating-point result of <IMG
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img268.png"
 ALT="$a \oplus b$">.
Machine epsilon, <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">,
is the smallest value for which this inequality
is true for all <IMG
 WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img265.png"
 ALT="$\oplus$">,
and for all <B><I>a</I></B> and <B><I>b</I></B> such that
<IMG
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img268.png"
 ALT="$a \oplus b$">
is neither too large (magnitude exceeds the overflow
threshold)<A NAME="9738"></A><A NAME="9739"></A>
nor too small
(is nonzero with magnitude less than the underflow threshold)<A NAME="9740"></A><A NAME="9741"></A>
to be represented accurately in the machine.
We also assume <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">
bounds the relative error in unary<A NAME="9742"></A><A NAME="9743"></A>
operations like square root:
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| fl( \sqrt{a} ) - (\sqrt{a} ) | \leq \epsilon \cdot | \sqrt{a} | \; .
\end{displaymath}
 -->


<IMG
 WIDTH="205" HEIGHT="31" BORDER="0"
 SRC="img269.png"
 ALT="\begin{displaymath}
\vert fl( \sqrt{a} ) - (\sqrt{a} ) \vert \leq \epsilon \cdot \vert \sqrt{a} \vert \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>

<P>
A precise characterization of <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">
depends on the details of the
machine arithmetic and sometimes even of the compiler.
For example, if addition and
subtraction are implemented without a guard digit<A NAME="tex2html1856"
 HREF="footnode.html#foot9747"><SUP>4.1</SUP></A>we must redefine <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">
to be the smallest number
such that
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| fl(a \pm b ) - (a \pm b ) | \leq \epsilon \cdot ( |a| + |b| ).
\end{displaymath}
 -->


<IMG
 WIDTH="266" HEIGHT="31" BORDER="0"
 SRC="img270.png"
 ALT="\begin{displaymath}
\vert fl(a \pm b ) - (a \pm b ) \vert \leq \epsilon \cdot ( \vert a\vert + \vert b\vert ).
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>

<P>
In order to assure portability<A NAME="9748"></A>,
machine parameters such as machine epsilon, the overflow threshold and
underflow threshold are computed at runtime by the auxiliary<A NAME="9749"></A><A NAME="9750"></A><A NAME="9751"></A>
routine xLAMCH<A NAME="tex2html1857"
 HREF="footnode.html#foot13097"><SUP>4.2</SUP></A>. The alternative,
keeping a fixed table of machine parameter values, would degrade portability
because the table would have to be changed when moving from one machine,
or even one compiler, to another.

<P>
Actually, most machines, but not yet all, do have the same machine
parameters because they implement IEEE Standard Floating Point Arithmetic
<A NAME="9753"></A>
[<A
 HREF="node151.html#ieee754">4</A>,<A
 HREF="node151.html#ieee854">5</A>], which exactly specifies floating-point number
representations and operations. For
these machines, including all modern workstations and
PCs<A NAME="tex2html1858"
 HREF="footnode.html#foot9755"><SUP>4.3</SUP></A>,
the values of these parameters are given in
Table&nbsp;<A HREF="node74.html#tabIEEEvalues">4.1</A>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabIEEEvalues"></A>
<DIV ALIGN="CENTER">
<A NAME="9758"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.1:</STRONG>
Values of Machine Parameters in IEEE Floating Point Arithmetic</CAPTION>
<TR><TD ALIGN="LEFT">Machine parameter</TD>
<TD ALIGN="LEFT">Single Precision (32 bits)</TD>
<TD ALIGN="LEFT">Double Precision (64 bits)</TD>
</TR>
<TR><TD ALIGN="LEFT">Machine epsilon <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">
= xLAMCH('E')</TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{-24}   \approx 5.96 \cdot 10^{-8}$
 -->
<IMG
 WIDTH="140" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img271.png"
 ALT="$2^{-24} \approx 5.96 \cdot 10^{-8}$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{-53}   \approx 1.11 \cdot 10^{-16}$
 -->
<IMG
 WIDTH="147" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img272.png"
 ALT="$2^{-53} \approx 1.11 \cdot 10^{-16}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Underflow threshold = xLAMCH('U')</TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{-126}  \approx 1.18 \cdot 10^{-38}$
 -->
<IMG
 WIDTH="154" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img273.png"
 ALT="$2^{-126} \approx 1.18 \cdot 10^{-38}$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{-1022} \approx 2.23 \cdot 10^{-308}$
 -->
<IMG
 WIDTH="167" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img274.png"
 ALT="$2^{-1022} \approx 2.23 \cdot 10^{-308}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Overflow  threshold = xLAMCH('O')</TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{128} (1-\epsilon) \approx 3.40 \cdot 10^{38}$
 -->
<IMG
 WIDTH="183" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img275.png"
 ALT="$2^{128} (1-\epsilon) \approx 3.40 \cdot 10^{38}$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
 $2^{1024}(1-\epsilon) \approx 1.79 \cdot 10^{308}$
 -->
<IMG
 WIDTH="197" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img276.png"
 ALT="$2^{1024}(1-\epsilon) \approx 1.79 \cdot 10^{308}$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
As stated above, we will ignore overflow and underflow in discussing error
bounds. References [<A
 HREF="node151.html#demmel84">24</A>,<A
 HREF="node151.html#higham96">67</A>] discuss extending error bounds
to include
underflow, and show that for many common computations, when underflow occurs it
is less significant than roundoff. With some important exceptions described below,
overflow usually means that a computation has failed so the error bounds do not apply.
<A NAME="9779"></A>
<A NAME="9780"></A>
<A NAME="9781"></A>
<A NAME="9782"></A>

<P>
 
<P>
Therefore, most of our error bounds will simply be proportional to machine epsilon.
This means, for example, that if the
same problem in solved in double precision and single precision, the error bound
in double precision will be smaller than the error bound in single precision
by a factor
of 
<!-- MATH
 $\epsilon_{\rm double} / \epsilon_{\rm single}$
 -->
<IMG
 WIDTH="101" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img277.png"
 ALT="$\epsilon_{\rm double} / \epsilon_{\rm single}$">.
In IEEE arithmetic, this
ratio is 
<!-- MATH
 $2^{-53}/2^{-24} \approx 10^{-9}$
 -->
<IMG
 WIDTH="139" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img278.png"
 ALT="$2^{-53}/2^{-24} \approx 10^{-9}$">,
meaning that one expects the double precision answer to have approximately nine
more decimal digits correct than the single precision answer.

<P>
LAPACK routines are generally insensitive to the details of rounding and
exception handling, like their counterparts in LINPACK and EISPACK.
One algorithm, xLASV2, <A NAME="9798"></A><A NAME="9799"></A>
can return significantly more accurate results if addition and subtraction
have a guard digit, but is still quite accurate if they do not
(see the end of section <A HREF="node96.html#secsvd">4.9</A>).

<P>
However, several LAPACK routines do make assumptions about details of
the floating point arithmetic. We list these routines here.

<UL><LI>Infinity and NaN arithmetic. In IEEE arithmetic, there are specific rules
for evaluating quantities like <B>1/0</B> and <B>0/0</B>. Overflowed quantities and
division-by-zero (like <B>1/0</B>) result in a <IMG
 WIDTH="35" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img279.png"
 ALT="$\pm \infty$">
symbol, which continues
to propagate through the computation using rules like <IMG
 WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img280.png"
 ALT="$3/\infty = 0$">.
In particular, there is no error message or termination of execution.
Similarly, quantities like <B>0/0</B> and 
<!-- MATH
 $\infty / \infty$
 -->
<IMG
 WIDTH="48" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img281.png"
 ALT="$\infty / \infty$">
must be replaced by
NaN (the ``Not a Number'' symbol) and propagated as well. See [<A
 HREF="node151.html#ieee754">4</A>,<A
 HREF="node151.html#ieee854">5</A>]
for details. The following LAPACK routines, and the routines that call them,
assume the presence of this infinity and NaN arithmetic for their correct functioning:

<UL><LI>xSTEGR, which computes eigenvalues and eigenvectors of symmetric tridiagonal
         matrices. It is called by the drivers for the symmetric and Hermitian
         eigenproblems xSYEVR, xHEEVR and xSTEVR.<A NAME="tex2html1860"
 HREF="footnode.html#foot9804"><SUP>4.4</SUP></A><A NAME="9805"></A><A NAME="9806"></A><A NAME="9807"></A><A NAME="9808"></A>
<A NAME="9809"></A><A NAME="9810"></A><A NAME="9811"></A><A NAME="9812"></A>
<A NAME="9813"></A><A NAME="9814"></A><A NAME="9815"></A><A NAME="9816"></A>
<A NAME="9817"></A><A NAME="9818"></A>
   
</UL>

<LI>Accuracy of add/subtract. If there is a <EM>guard digit</EM> in addition and
   subtraction, or if there is no guard digit but addition and subtraction are
   performed in the way they are on the Cray C90, Cray YMP, Cray XMP or Cray 2,
   then we can guarantee that the following routines work correctly. (They could
   theoretically fail on a hexadecimal or decimal machine without a guard digit,
   but we know of no such machine.)

<UL><LI>xSTEDC, which uses divide-and-conquer to find the eigenvalues and eigenvectors
         of a symmetric tridiagonal matrix. It is called by all the drivers for
         the symmetric, Hermitian, generalized symmetric definite and
         generalized Hermitian definite eigenvalue drivers with names ending in -EVD
         or -GVD.
<A NAME="9822"></A><A NAME="9823"></A>
<A NAME="9824"></A><A NAME="9825"></A>
<A NAME="9826"></A><A NAME="9827"></A>
<A NAME="9828"></A><A NAME="9829"></A>
<A NAME="9830"></A><A NAME="9831"></A>
<A NAME="9832"></A><A NAME="9833"></A>
<A NAME="9834"></A><A NAME="9835"></A>
<A NAME="9836"></A><A NAME="9837"></A>
<A NAME="9838"></A><A NAME="9839"></A>
<A NAME="9840"></A><A NAME="9841"></A>
<A NAME="9842"></A><A NAME="9843"></A>
<A NAME="9844"></A><A NAME="9845"></A>
<A NAME="9846"></A><A NAME="9847"></A>
<A NAME="9848"></A><A NAME="9849"></A>
<A NAME="9850"></A><A NAME="9851"></A>

<LI>xBDSDC, which uses divide-and-conquer to find the SVD
         of a bidiagonal matrix. It is called by xGESDD.
<A NAME="9852"></A><A NAME="9853"></A>
<A NAME="9854"></A><A NAME="9855"></A><A NAME="9856"></A><A NAME="9857"></A>

<LI>xLALSD, which uses divide-and-conquer to solve a bidiagonal least squares
         problem with the SVD. It is called by xGELSD.
<A NAME="9858"></A><A NAME="9859"></A>
<A NAME="9860"></A><A NAME="9861"></A><A NAME="9862"></A><A NAME="9863"></A>
   
</UL>
</UL>
<A NAME="9866"></A>
<A NAME="9867"></A>
<A NAME="9868"></A>
<A NAME="9869"></A>
<A NAME="9870"></A>
<A NAME="9871"></A>
<A NAME="9872"></A>
<A NAME="9873"></A>
<A NAME="9874"></A>
<A NAME="9875"></A>
<A NAME="9876"></A>
<A NAME="9877"></A>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5230"
 HREF="node75.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5224"
 HREF="node73.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5220"
 HREF="node73.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5226"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5228"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5231"
 HREF="node75.html">How to Measure Errors</A>
<B> Up:</B> <A NAME="tex2html5225"
 HREF="node73.html">Sources of Error in</A>
<B> Previous:</B> <A NAME="tex2html5221"
 HREF="node73.html">Sources of Error in</A>
 &nbsp <B>  <A NAME="tex2html5227"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5229"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>