1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>How to Measure Errors</TITLE>
<META NAME="description" CONTENT="How to Measure Errors">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node77.html">
<LINK REL="previous" HREF="node73.html">
<LINK REL="up" HREF="node72.html">
<LINK REL="next" HREF="node76.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5244"
HREF="node76.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5238"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5232"
HREF="node74.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5240"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5242"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5245"
HREF="node76.html">Further Details: How to</A>
<B> Up:</B> <A NAME="tex2html5239"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5233"
HREF="node74.html">Further Details: Floating Point</A>
  <B> <A NAME="tex2html5241"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5243"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03420000000000000000"></A><A NAME="secnormnotation"></A>
<BR>
How to Measure Errors
</H1>
<P>
<A NAME="9880"></A>
LAPACK routines return four types of floating-point output arguments:
<A NAME="9882"></A>
<UL><LI><EM>Scalar</EM>, such as an eigenvalue of a matrix,
<A NAME="9884"></A>
<LI><EM>Vector</EM>, such as the solution <B><I>x</I></B> of a linear system <B><I>Ax</I>=<I>b</I></B>,
<A NAME="9886"></A>
<LI><EM>Matrix</EM>, such as a matrix inverse <B><I>A</I><SUP>-1</SUP></B>, and
<A NAME="9889"></A>
<LI><EM>Subspace</EM>, such as the space spanned by one or more eigenvectors of a matrix.
</UL>
This section provides measures for errors in these quantities, which we
need in order to express error bounds.
<P>
<A NAME="9892"></A>
First consider <EM>scalars</EM>. Let the scalar <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
be an approximation of
the true answer <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">.
We can measure the difference between <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
and <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
either by the <B>absolute error</B>
<!-- MATH
$| \hat{\alpha} - \alpha |$
-->
<IMG
WIDTH="58" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img283.png"
ALT="$\vert \hat{\alpha} - \alpha \vert$">,
or, if <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
is nonzero, by the <B>relative error</B>
<!-- MATH
$| \hat{\alpha} - \alpha | / | \alpha |$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img284.png"
ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \alpha \vert$">.
Alternatively, it is sometimes more convenient
to use
<!-- MATH
$| \hat{\alpha} - \alpha | / | \hat{\alpha} |$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img285.png"
ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \hat{\alpha} \vert$">
instead of the standard expression
for relative error (see section <A HREF="node76.html#secbackgroundnormnotation">4.2.1</A>).
If the relative error of <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
is, say <B>10<SUP>-5</SUP></B>, then we say that
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
is <EM>accurate to 5 decimal digits</EM>.
<A NAME="9907"></A><A NAME="9908"></A>
<A NAME="9909"></A><A NAME="9910"></A>
<P>
<A NAME="9911"></A>
In order to measure the error in <EM>vectors</EM>, we need to measure the <EM>size</EM>
or <EM>norm</EM> of a vector <B><I>x</I></B><A NAME="9915"></A>. A popular norm
is the magnitude of the largest component,
<!-- MATH
$\max_{1 \leq i \leq n} |x_i|$
-->
<IMG
WIDTH="106" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img286.png"
ALT="$\max_{1 \leq i \leq n} \vert x_i\vert$">,
which we denote
<!-- MATH
$\| x \|_{\infty}$
-->
<IMG
WIDTH="46" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img287.png"
ALT="$\Vert x \Vert _{\infty}$">.
This is read <EM>the infinity norm of</EM> <B><I>x</I></B>.
See Table <A HREF="node75.html#tabnorms">4.2</A> for a summary of norms.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="9922"></A>
<A NAME="9923"></A>
<A NAME="9924"></A>
<A NAME="9925"></A>
<A NAME="9926"></A>
<A NAME="9927"></A>
<A NAME="tabnorms"></A>
<DIV ALIGN="CENTER">
<A NAME="9921"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.2:</STRONG>
Vector and matrix norms</CAPTION>
<TR><TD ALIGN="LEFT"> </TD>
<TD ALIGN="LEFT">Vector</TD>
<TD ALIGN="LEFT">Matrix</TD>
</TR>
<TR><TD ALIGN="LEFT">one-norm</TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|x\|_{1} = \sum_i |x_i|$
-->
<IMG
WIDTH="113" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img288.png"
ALT="$\Vert x\Vert _{1} = \sum_i \vert x_i\vert$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|A\|_{1} = \max_j \sum_i |a_{ij}|$
-->
<IMG
WIDTH="164" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img289.png"
ALT="$\Vert A\Vert _{1} = \max_j \sum_i \vert a_{ij}\vert$"></TD>
</TR>
<TR><TD ALIGN="LEFT">two-norm</TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|x\|_2 = ( \sum_i |x_i|^2 )^{1/2}$
-->
<IMG
WIDTH="155" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img290.png"
ALT="$\Vert x\Vert _2 = ( \sum_i \vert x_i\vert^2 )^{1/2}$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|A\|_2 = \max_{x \neq 0} \|Ax\|_2 / \|x\|_2$
-->
<IMG
WIDTH="219" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img291.png"
ALT="$\Vert A\Vert _2 = \max_{x \neq 0} \Vert Ax\Vert _2 / \Vert x\Vert _2$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Frobenius norm</TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|x\|_F = \|x\|_2$
-->
<B>|x|<SUB><I>F</I></SUB> = |x|<SUB>2</SUB></B></TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|A\|_F = ( \sum_{ij} |a_{ij}|^2 )^{1/2}$
-->
<IMG
WIDTH="173" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img292.png"
ALT="$\Vert A\Vert _F = ( \sum_{ij} \vert a_{ij}\vert^2 )^{1/2}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">infinity-norm</TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|x\|_{\infty} = \max_i |x_i|$
-->
<IMG
WIDTH="135" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img293.png"
ALT="$\Vert x\Vert _{\infty} = \max_i \vert x_i\vert$"></TD>
<TD ALIGN="LEFT">
<!-- MATH
$\|A\|_{\infty} = \max_i \sum_j |a_{ij}|$
-->
<IMG
WIDTH="170" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img294.png"
ALT="$\Vert A\Vert _{\infty} = \max_i \sum_j \vert a_{ij}\vert$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
If <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is an approximation to the
exact vector <B><I>x</I></B>, we will refer to
<!-- MATH
$\| \hat{x} - x \|_{p}$
-->
<IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img296.png"
ALT="$\Vert \hat{x} - x \Vert _{p}$">
as the
absolute error in <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
(where <B><I>p</I></B> is one of the values in Table <A HREF="node75.html#tabnorms">4.2</A>),
<A NAME="9951"></A><A NAME="9952"></A>
<A NAME="9953"></A><A NAME="9954"></A>
and refer to
<!-- MATH
$\| \hat{x} - x \|_{p} / \| x \|_{p}$
-->
<IMG
WIDTH="114" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img297.png"
ALT="$\Vert \hat{x} - x \Vert _{p} / \Vert x \Vert _{p}$">
as the relative error
in <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
(assuming
<!-- MATH
$\| x \|_{p} \neq 0$
-->
<IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img298.png"
ALT="$\Vert x \Vert _{p} \neq 0$">). As with scalars,
we will sometimes use
<!-- MATH
$\| \hat{x} - x \|_{p} / \| \hat{x} \|_{p}$
-->
<IMG
WIDTH="114" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img299.png"
ALT="$\Vert \hat{x} - x \Vert _{p} / \Vert \hat{x} \Vert _{p}$">
for the relative error.
As above, if the relative error of <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is, say <B>10<SUP>-5</SUP></B>, then we say
that <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is accurate to 5 decimal digits.
The following example illustrates these ideas:
<P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = \left( \begin{array}{c} 1 \\100 \\9 \end{array} \right) \; \; , \; \;
\hat{x} = \left( \begin{array}{c} 1.1 \\99 \\11 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="228" HEIGHT="73" BORDER="0"
SRC="img300.png"
ALT="\begin{displaymath}
x = \left( \begin{array}{c} 1 \\ 100 \\ 9 \end{array} \right...
...= \left( \begin{array}{c} 1.1 \\ 99 \\ 11 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="459" HEIGHT="143" BORDER="0"
SRC="img301.png"
ALT="\begin{eqnarray*}
\Vert \hat{x} - x \Vert _{\infty} = 2 \; , \; & \displaystyle{...
...{\Vert \hat{x} - x \Vert _{1}}{\Vert \hat{x} \Vert _{1}} = .0279
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
Thus, we would say that <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
approximates <B><I>x</I></B> to 2
decimal digits.
<P>
<A NAME="10000"></A>
Errors in <EM>matrices</EM> may also be measured with norms<A NAME="10002"></A>.
The most obvious
generalization of
<!-- MATH
$\|x\|_{\infty}$
-->
<IMG
WIDTH="46" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img287.png"
ALT="$\Vert x \Vert _{\infty}$">
to matrices would appear to be
<!-- MATH
$\| A \| = \max_{i,j} |a_{ij}|$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img302.png"
ALT="$\Vert A \Vert = \max_{i,j} \vert a_{ij}\vert$">,
but this does not have certain
important mathematical properties that make deriving error bounds
convenient (see section <A HREF="node76.html#secbackgroundnormnotation">4.2.1</A>).
Instead, we will use
<!-- MATH
$\| A \|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n |a_{ij}|$
-->
<IMG
WIDTH="228" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img303.png"
ALT="$\Vert A \Vert _{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n \vert a_{ij}\vert$">,
where <B><I>A</I></B> is an <B><I>m</I></B>-by-<B><I>n</I></B> matrix, or
<!-- MATH
$\| A \|_{1} = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$
-->
<IMG
WIDTH="217" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img304.png"
ALT="$\Vert A \Vert _{1} = \max_{1 \leq j \leq n} \sum_{i=1}^m \vert a_{ij}\vert$">;
see Table <A HREF="node75.html#tabnorms">4.2</A> for other matrix norms.
As before
<!-- MATH
$\| \hat{A} - A \|_{p}$
-->
<IMG
WIDTH="77" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img305.png"
ALT="$\Vert \hat{A} - A \Vert _{p}$">
is the absolute
error<A NAME="10018"></A><A NAME="10019"></A>
in <IMG
WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img306.png"
ALT="$\hat{A}$">,
<!-- MATH
$\| \hat{A} - A \|_{p} / \| A \|_{p}$
-->
<IMG
WIDTH="124" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img307.png"
ALT="$\Vert \hat{A} - A \Vert _{p} / \Vert A \Vert _{p}$">
is the relative error<A NAME="10024"></A><A NAME="10025"></A>
in <IMG
WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img306.png"
ALT="$\hat{A}$">,
and a relative error in <IMG
WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img306.png"
ALT="$\hat{A}$">
of
<B>10<SUP>-5</SUP></B> means <IMG
WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img306.png"
ALT="$\hat{A}$">
is accurate to 5 decimal digits.
The following example illustrates these ideas:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{ccc} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 10 \end{array} \right) \; \; , \; \;
\hat{A} = \left( \begin{array}{ccc} .44 & 2.36 & 3.04 \\3.09 & 5.87 & 6.66 \\7.36 & 7.77 & 9.07 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="378" HEIGHT="73" BORDER="0"
SRC="img308.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & ...
... 3.09 & 5.87 & 6.66 \\ 7.36 & 7.77 & 9.07 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="483" HEIGHT="214" BORDER="0"
SRC="img309.png"
ALT="\begin{eqnarray*}
\Vert \hat{A} - A \Vert _{\infty} = 2.44 \; , \; & \displaysty...
...{\Vert \hat{A} - A \Vert _{F}}{\Vert \hat{A} \Vert _{F}} = .1082
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
so <IMG
WIDTH="17" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img306.png"
ALT="$\hat{A}$">
is accurate to 1 decimal digit.
<P>
Here is some related notation we will use in our error bounds.
The <B>condition number of a matrix</B> <B><I>A</I></B> is defined as
<A NAME="10073"></A>
<!-- MATH
$\kappa_p (A) \equiv \|A\|_p \cdot \|A^{-1}\|_p$
-->
<IMG
WIDTH="179" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img310.png"
ALT="$\kappa_p (A) \equiv \Vert A\Vert _p \cdot \Vert A^{-1}\Vert _p$">,
where <B><I>A</I></B>
is square and invertible, and <B><I>p</I></B> is <IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$">
or one of the other
possibilities in Table <A HREF="node75.html#tabnorms">4.2</A>. The condition number
measures how sensitive <B><I>A</I><SUP>-1</SUP></B> is to changes in <B><I>A</I></B>; the larger
the condition number, the more sensitive is <B><I>A</I><SUP>-1</SUP></B>. For example,
for the same <B><I>A</I></B> as in the last example,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A^{-1} \approx \left( \begin{array}{ccc} -.667 & -1.333 & 1 \\-.667 & 3.667 & -2 \\1 & -2 & 1 \end{array} \right)
\; \; {\rm and} \; \; \kappa_{\infty} (A) = 158.33 \; \; .
\end{displaymath}
-->
<IMG
WIDTH="436" HEIGHT="73" BORDER="0"
SRC="img312.png"
ALT="\begin{displaymath}
A^{-1} \approx \left( \begin{array}{ccc} -.667 & -1.333 & 1 ...
...t)
\; \; {\rm and} \; \; \kappa_{\infty} (A) = 158.33 \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
LAPACK
error estimation routines typically compute a variable called
<TT>RCOND</TT><A NAME="10083"></A>, which is the reciprocal of the condition number (or an
approximation of the reciprocal). The reciprocal of the condition
number is used instead of the condition number itself in order
to avoid the possibility of overflow when the condition number is very large.
<A NAME="10084"></A>
<A NAME="10085"></A>
Also, some of our error bounds will use the vector of absolute values
of <B><I>x</I></B>, <B>|x|</B> (
<!-- MATH
$|x|_i = |x_i |$
-->
<B>|x|<SUB><I>i</I></SUB> = |x<SUB><I>i</I></SUB> |</B>), or similarly <B>|A|</B>
(
<!-- MATH
$|A|_{ij} = |a_{ij}|$
-->
<B>|A|<SUB><I>ij</I></SUB> = |a<SUB><I>ij</I></SUB>|</B>).
<P>
<A NAME="10088"></A>
Now we consider errors in <EM>subspaces</EM>. Subspaces are the
outputs of routines that compute eigenvectors and invariant
subspaces of matrices. We need a careful definition
of error in these cases for the following reason. The nonzero vector <B><I>x</I></B> is called a
<EM>(right) eigenvector</EM> of the matrix <B><I>A</I></B> with <EM>eigenvalue</EM>
<IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img23.png"
ALT="$\lambda$">
if
<!-- MATH
$Ax = \lambda x$
-->
<IMG
WIDTH="71" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img313.png"
ALT="$Ax = \lambda x$">.
From this definition, we see that
<B>-<I>x</I></B>, <B>2<I>x</I></B>, or any other nonzero multiple <IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img314.png"
ALT="$\beta x$">
of <B><I>x</I></B> is also an
eigenvector. In other words, eigenvectors are not unique. This
means we cannot measure the difference between two supposed eigenvectors
<IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
and <B><I>x</I></B> by computing
<!-- MATH
$\| \hat{x} - x \|_2$
-->
<IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img315.png"
ALT="$\Vert \hat{x} - x \Vert _2$">,
because this may
be large while
<!-- MATH
$\| \hat{x} - \beta x \|_2$
-->
<IMG
WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img316.png"
ALT="$\Vert \hat{x} - \beta x \Vert _2$">
is small or even zero for
some <IMG
WIDTH="47" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img317.png"
ALT="$\beta \neq 1$">.
This is true
even if we normalize <B><I>x</I></B> so that <B>|x|<SUB>2</SUB> = 1</B>, since both
<B><I>x</I></B> and <B>-<I>x</I></B> can be normalized simultaneously. So in order to define
error in a useful way, we need to instead consider the set <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
of
all scalar multiples
<!-- MATH
$\{ \beta x \; , \; \beta {\rm ~a~scalar} \}$
-->
<IMG
WIDTH="135" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img319.png"
ALT="$\{ \beta x \; , \; \beta {\rm ~a~scalar} \}$">
of
<B><I>x</I></B>. The set <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
is
called the <EM>subspace spanned by <B><I>x</I></B></EM>, and is uniquely determined
by any nonzero member of <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">.
We will measure the difference
between two such sets by the <EM>acute angle</EM> between them.
Suppose <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
is spanned by <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img321.png"
ALT="$\{ \hat x \}$">
and
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
is spanned by <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img322.png"
ALT="$\{ x \}$">.
Then the acute angle between
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
and <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
is defined as
<A NAME="10100"></A>
<A NAME="10101"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) =
\theta ( \hat{x} , x ) \equiv \arccos
\frac{| \hat{x}^T x |}{ \| \hat{x} \|_2 \cdot \| x \|_2 } \; \; .
\end{displaymath}
-->
<IMG
WIDTH="300" HEIGHT="50" BORDER="0"
SRC="img323.png"
ALT="\begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) =
\theta ( \hat{x} , x ) \...
...vert}{ \Vert \hat{x} \Vert _2 \cdot \Vert x \Vert _2 } \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
One can show that
<!-- MATH
$\theta ( \hat{x} , x )$
-->
<IMG
WIDTH="54" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img324.png"
ALT="$\theta ( \hat{x} , x )$">
does not change when either
<IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
or <B><I>x</I></B> is multiplied by any nonzero scalar. For example, if
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = \left( \begin{array}{c} 1 \\100 \\9 \end{array} \right) \; \; {\rm and} \; \;
\hat{x} = \left( \begin{array}{c} 1.1 \\99 \\11 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="249" HEIGHT="73" BORDER="0"
SRC="img325.png"
ALT="\begin{displaymath}
x = \left( \begin{array}{c} 1 \\ 100 \\ 9 \end{array} \right...
...= \left( \begin{array}{c} 1.1 \\ 99 \\ 11 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
as above, then
<!-- MATH
$\theta ( \gamma \hat{x} , \beta x ) = .0209$
-->
<IMG
WIDTH="138" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img326.png"
ALT="$\theta ( \gamma \hat{x} , \beta x ) = .0209$">
for any
nonzero scalars <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
and <IMG
WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img327.png"
ALT="$\gamma$">.
<P>
Here is another way to interpret the angle <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img328.png"
ALT="$\theta$">
between <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
and
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">.
<A NAME="10115"></A>
<A NAME="10116"></A>
Suppose <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is a unit vector (
<!-- MATH
$\| \hat{x} \|_2 = 1$
-->
<IMG
WIDTH="71" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img329.png"
ALT="$\Vert \hat{x} \Vert _2 = 1$">).
Then there is a scalar <IMG
WIDTH="15" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img50.png"
ALT="$\beta$">
such that
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\| \hat{x} - \beta x \|_2 = \frac{\sqrt{2} \sin \theta}{\sqrt{1+ \cos \theta}} \approx \theta
\; .
\end{displaymath}
-->
<IMG
WIDTH="222" HEIGHT="50" BORDER="0"
SRC="img330.png"
ALT="\begin{displaymath}
\Vert \hat{x} - \beta x \Vert _2 = \frac{\sqrt{2} \sin \theta}{\sqrt{1+ \cos \theta}} \approx \theta
\; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The approximation
<!-- MATH
$\approx \theta$
-->
<IMG
WIDTH="31" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img331.png"
ALT="$\approx \theta$">
holds when <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img328.png"
ALT="$\theta$">
is much less than 1
(less than .1 will do nicely). If <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is an approximate
eigenvector with error bound
<!-- MATH
$\theta ( \hat{x} , x ) \leq \bar{\theta} \ll 1$
-->
<IMG
WIDTH="122" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img332.png"
ALT="$\theta ( \hat{x} , x ) \leq \bar{\theta} \ll 1$">,
where <B><I>x</I></B> is a true eigenvector, there is another true eigenvector
<IMG
WIDTH="25" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img314.png"
ALT="$\beta x$">
satisfying
<!-- MATH
$\| \hat{x} - \beta x \|_2 \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\bar{\theta}$
-->
<IMG
WIDTH="113" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img333.png"
ALT="$\Vert \hat{x} - \beta x \Vert _2 \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\bar{\theta}$">.
For example, if
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\hat{x} = \left( \begin{array}{c} 1.1 \\99 \\11 \end{array} \right) \cdot (1.1^2 + 99^2 + 11^2)^{-1/2}
\; {\rm so} \; \| \hat{x} \|_2 = 1
\; \; {\rm and} \; \;
x = \left( \begin{array}{c} 1 \\100 \\9 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="518" HEIGHT="73" BORDER="0"
SRC="img334.png"
ALT="\begin{displaymath}
\hat{x} = \left( \begin{array}{c} 1.1 \\ 99 \\ 11 \end{array...
...x = \left( \begin{array}{c} 1 \\ 100 \\ 9 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then
<!-- MATH
$\| \hat{x} - \beta x \|_2 \approx .0209$
-->
<IMG
WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img335.png"
ALT="$\Vert \hat{x} - \beta x \Vert _2 \approx .0209$">
for
<!-- MATH
$\beta \approx .001$
-->
<IMG
WIDTH="69" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img336.png"
ALT="$\beta \approx .001$">.
<P>
Some LAPACK routines also return subspaces spanned by more than one
vector, such as the invariant subspaces of matrices returned by xGEESX.
<A NAME="10135"></A><A NAME="10136"></A><A NAME="10137"></A><A NAME="10138"></A>
The notion of angle between subspaces also applies here;
<A NAME="10139"></A>
<A NAME="10140"></A>
see section <A HREF="node76.html#secbackgroundnormnotation">4.2.1</A> for details.
<P>
Finally, many of our error bounds will contain a factor <B><I>p</I>(<I>n</I>)</B> (or <B><I>p</I>(<I>m</I>,<I>n</I>)</B>),
which grows as a function of matrix dimension <B><I>n</I></B> (or dimensions <B><I>m</I></B> and <B><I>n</I></B>).
It represents a potentially different function for each problem.
In practice, the true errors usually grow just linearly; using
<B><I>p</I>(<I>n</I>)=10<I>n</I></B> in the error bound formulas will often give a reasonable bound.
Therefore, we will refer to <B><I>p</I>(<I>n</I>)</B> as a ``modestly growing'' function of <B><I>n</I></B>.
However it can occasionally be much larger, see
section <A HREF="node76.html#secbackgroundnormnotation">4.2.1</A>.
<B>For simplicity, the error bounds computed by the code fragments
in the following sections will use</B> <B><I>p</I>(<I>n</I>)=1</B>.
<B>This means these computed error bounds may occasionally
slightly underestimate the true error. For this reason we refer
to these computed error bounds as ``approximate error bounds''.</B>
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5246"
HREF="node76.html">Further Details: How to Measure Errors</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5244"
HREF="node76.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5238"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5232"
HREF="node74.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5240"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5242"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5245"
HREF="node76.html">Further Details: How to</A>
<B> Up:</B> <A NAME="tex2html5239"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5233"
HREF="node74.html">Further Details: Floating Point</A>
  <B> <A NAME="tex2html5241"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5243"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|