File: node76.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (777 lines) | stat: -rw-r--r-- 22,243 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: How to Measure Errors</TITLE>
<META NAME="description" CONTENT="Further Details: How to Measure Errors">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node75.html">
<LINK REL="up" HREF="node75.html">
<LINK REL="next" HREF="node77.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5257"
 HREF="node77.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5251"
 HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5247"
 HREF="node75.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5253"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5255"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5258"
 HREF="node77.html">Further Details: How Error</A>
<B> Up:</B> <A NAME="tex2html5252"
 HREF="node75.html">How to Measure Errors</A>
<B> Previous:</B> <A NAME="tex2html5248"
 HREF="node75.html">How to Measure Errors</A>
 &nbsp <B>  <A NAME="tex2html5254"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5256"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03421000000000000000"></A><A NAME="secbackgroundnormnotation"></A>
<BR>
Further Details:  How to Measure Errors
</H2>

<P>
<A NAME="10147"></A><A NAME="10148"></A>
The relative error 
<!-- MATH
 $| \hat{\alpha} - \alpha | / | \alpha |$
 -->
<IMG
 WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img284.png"
 ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \alpha \vert$">
in the approximation
<IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img282.png"
 ALT="$\hat{\alpha}$">
of the true solution <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img49.png"
 ALT="$\alpha$">
has a drawback: it often cannot
be computed directly, because it depends on the unknown quantity
<IMG
 WIDTH="25" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img337.png"
 ALT="$\vert \alpha \vert$">.
However, we can often instead estimate

<!-- MATH
 $| \hat{\alpha} - \alpha | / | \hat{\alpha} |$
 -->
<IMG
 WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img285.png"
 ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \hat{\alpha} \vert$">,
since <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img282.png"
 ALT="$\hat{\alpha}$">
is
known (it is the output of our algorithm). Fortunately, these two
quantities are necessarily close together, provided either one is small,
which is the only time they provide a useful bound anyway. For example,

<!-- MATH
 $| \hat{\alpha} - \alpha | / | \hat{\alpha} | \leq .1$
 -->
<IMG
 WIDTH="124" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img338.png"
 ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \hat{\alpha} \vert \leq .1$">
implies
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
.9 \frac{| \hat{\alpha} - \alpha |}{| \hat{\alpha} |} \leq
\frac{| \hat{\alpha} - \alpha |}{| {\alpha} |} \leq
1.1 \frac{| \hat{\alpha} - \alpha |}{| \hat{\alpha} |} \; \; ,
\end{displaymath}
 -->


<IMG
 WIDTH="267" HEIGHT="48" BORDER="0"
 SRC="img339.png"
 ALT="\begin{displaymath}
.9 \frac{\vert \hat{\alpha} - \alpha \vert}{\vert \hat{\alph...
...\hat{\alpha} - \alpha \vert}{\vert \hat{\alpha} \vert} \; \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
so they can be used interchangeably.

<P>
Table&nbsp;<A HREF="node75.html#tabnorms">4.2</A> contains a variety of norms we will use to
measure errors.
These norms have the properties that

<!-- MATH
 $\|Ax\|_p \leq \|A\|_p \cdot \|x\|_p$
 -->
<IMG
 WIDTH="161" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img340.png"
 ALT="$\Vert Ax\Vert _p \leq \Vert A\Vert _p \cdot \Vert x\Vert _p$">,
and

<!-- MATH
 $\|AB\|_p \leq \|A\|_p \cdot \|B\|_p$
 -->
<IMG
 WIDTH="170" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img341.png"
 ALT="$\Vert AB\Vert _p \leq \Vert A\Vert _p \cdot \Vert B\Vert _p$">,
where <B><I>p</I></B> is one of
<B>1</B>, <B>2</B>, <IMG
 WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img311.png"
 ALT="$\infty$">,
and <B><I>F</I></B>. These properties are useful for deriving
error bounds.

<P>
An error bound that uses a given norm may be changed into an error bound
that uses another norm. This is accomplished by multiplying the first
error bound by an appropriate function of the problem dimension.
Table&nbsp;<A HREF="node76.html#tableVectorNormFpq">4.3</A> gives the
factors <B><I>f</I><SUB><I>pq</I></SUB>(<I>n</I>)</B> such that 
<!-- MATH
 $\| x \|_p \leq f_{pq}(n) \|x \|_q$
 -->
<IMG
 WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img342.png"
 ALT="$\Vert x \Vert _p \leq f_{pq}(n) \Vert x \Vert _q$">,
where
<B><I>n</I></B> is the dimension of <B><I>x</I></B>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tableVectorNormFpq"></A>
<P>
<DIV ALIGN="CENTER">
Values of <B><I>f</I><SUB><I>pq</I></SUB>(<I>n</I>)</B> such that 
<!-- MATH
 $\| x \|_p \leq f_{pq}(n) \|x \|_q$
 -->
<IMG
 WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img342.png"
 ALT="$\Vert x \Vert _p \leq f_{pq}(n) \Vert x \Vert _q$">,
where <B><I>x</I></B> is an <B><I>n</I></B>-vector
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="10167"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.3:</STRONG>
Bounding One Vector Norm in Terms of Another</CAPTION>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER" COLSPAN=3><B><I>q</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER" COLSPAN=1>1</TD>
<TD ALIGN="CENTER" COLSPAN=1>2</TD>
<TD ALIGN="CENTER" COLSPAN=1><IMG
 WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img311.png"
 ALT="$\infty$"></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER"><B><I>n</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"><B><I>p</I></B></TD>
<TD ALIGN="CENTER">2</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img311.png"
 ALT="$\infty$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
Table&nbsp;<A HREF="node76.html#tableMatrixNormFpq">4.4</A> gives the
factors <B><I>f</I><SUB><I>pq</I></SUB>(<I>m</I>,<I>n</I>)</B> such that 
<!-- MATH
 $\| A \|_p \leq f_{pq}(m,n) \| A \|_q$
 -->
<IMG
 WIDTH="173" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img344.png"
 ALT="$\Vert A \Vert _p \leq f_{pq}(m,n) \Vert A \Vert _q$">,
where
<B><I>A</I></B> is <B><I>m</I></B>-by-<B><I>n</I></B>.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tableMatrixNormFpq"></A>
<P>
<DIV ALIGN="CENTER">
Values of <B><I>f</I><SUB><I>pq</I></SUB>(<I>m</I>,<I>n</I>)</B> such that 
<!-- MATH
 $\| A \|_p \leq f_{pq}(m,n) \| A \|_q$
 -->
<IMG
 WIDTH="173" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img344.png"
 ALT="$\Vert A \Vert _p \leq f_{pq}(m,n) \Vert A \Vert _q$">,
where <B><I>A</I></B> is <B><I>m</I></B>-by-<B><I>n</I></B>
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="10197"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.4:</STRONG>
Bounding One Matrix Norm in Terms of Another</CAPTION>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER" COLSPAN=4><B><I>q</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER" COLSPAN=1>1</TD>
<TD ALIGN="CENTER" COLSPAN=1>2</TD>
<TD ALIGN="CENTER" COLSPAN=1><B><I>F</I></B></TD>
<TD ALIGN="CENTER" COLSPAN=1><IMG
 WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img311.png"
 ALT="$\infty$"></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img345.png"
 ALT="$\sqrt{m}$"></TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img345.png"
 ALT="$\sqrt{m}$"></TD>
<TD ALIGN="CENTER"><B><I>m</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"><B><I>p</I></B></TD>
<TD ALIGN="CENTER">2</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img345.png"
 ALT="$\sqrt{m}$"></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER"><B><I>F</I></B></TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\sqrt{\min (m,n)}$
 -->
<IMG
 WIDTH="96" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img346.png"
 ALT="$\sqrt{\min (m,n)}$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img345.png"
 ALT="$\sqrt{m}$"></TD>
</TR>
<TR><TD ALIGN="CENTER">&nbsp;</TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img311.png"
 ALT="$\infty$"></TD>
<TD ALIGN="CENTER"><B><I>n</I></B></TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER"><IMG
 WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
 SRC="img343.png"
 ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">1</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
The two-norm of <B><I>A</I></B>, <B>|A|<SUB>2</SUB></B>, is also called the <B>spectral
norm</B> of <B><I>A</I></B>, and is equal to the <B>largest singular value</B>

<!-- MATH
 $\sigma_{\max}(A)$
 -->
<IMG
 WIDTH="67" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img347.png"
 ALT="$\sigma_{\max}(A)$">
of <B><I>A</I></B>.
We shall also need to refer to the <B>smallest singular value</B>

<!-- MATH
 $\sigma_{\min}(A)$
 -->
<IMG
 WIDTH="64" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img348.png"
 ALT="$\sigma_{\min}(A)$">
of <B><I>A</I></B>; its value can be defined in a similar way to
the definition of the two-norm in Table&nbsp;<A HREF="node75.html#tabnorms">4.2</A>, namely as

<!-- MATH
 $\min_{x \neq 0} \|Ax\|_2 / \|x\|_2$
 -->
<IMG
 WIDTH="154" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img349.png"
 ALT="$\min_{x \neq 0} \Vert Ax\Vert _2 / \Vert x\Vert _2$">
when <B><I>A</I></B>
has at least as many rows as columns, and defined as

<!-- MATH
 $\min_{x \neq 0} \|A^Tx\|_2 / \|x\|_2$
 -->
<IMG
 WIDTH="164" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img350.png"
 ALT="$\min_{x \neq 0} \Vert A^Tx\Vert _2 / \Vert x\Vert _2$">
when <B><I>A</I></B> has more
columns than rows.  The two-norm,
Frobenius norm<A NAME="10242"></A><A NAME="10243"></A>,
and singular values of a matrix do not change
if the matrix is multiplied by a real orthogonal (or complex unitary) matrix.

<P>
Now we define <EM>subspaces</EM> spanned by more than one vector,
and <EM>angles between subspaces</EM>.
<A NAME="10246"></A>
<A NAME="10247"></A>
<A NAME="10248"></A>
Given a set of <B><I>k</I></B>
<B><I>n</I></B>-dimensional vectors 
<!-- MATH
 $\{ x_1 , ... , x_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img351.png"
 ALT="$\{ x_1 , ... , x_k \}$">,
they determine
a subspace <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
consisting of all their possible linear combinations

<!-- MATH
 $\{ \sum_{i=1}^k \beta_i x_i$
 -->
<IMG
 WIDTH="86" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
 SRC="img352.png"
 ALT="$\{ \sum_{i=1}^k \beta_i x_i$">,
<IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img73.png"
 ALT="$\beta_i$">
scalars <B>}</B>. We also
say that 
<!-- MATH
 $\{ x_1 , ... , x_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img351.png"
 ALT="$\{ x_1 , ... , x_k \}$">
<EM>spans</EM> <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">.
The difficulty in measuring the difference between subspaces is that
the sets of vectors spanning them are not unique.
For example, <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img322.png"
 ALT="$\{ x \}$">,
<IMG
 WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img353.png"
 ALT="$\{ -x \}$">
and <IMG
 WIDTH="40" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img354.png"
 ALT="$\{ 2x \}$">
all determine the
same subspace.
This means we cannot simply compare the subspaces spanned by

<!-- MATH
 $\{ \hat{x}_1 , ... , \hat{x}_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img355.png"
 ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
and 
<!-- MATH
 $\{ x_1 , ... , x_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img351.png"
 ALT="$\{ x_1 , ... , x_k \}$">
by
comparing each <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img356.png"
 ALT="$\hat{x}_i$">
to <B><I>x</I><SUB><I>i</I></SUB></B>. Instead, we will measure the <EM>angle</EM>
between the subspaces, which is independent of the spanning set
of vectors. Suppose subspace <IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
is spanned by

<!-- MATH
 $\{ \hat{x}_1 , ... , \hat{x}_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img355.png"
 ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
and that subspace <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
is spanned by 
<!-- MATH
 $\{ x_1 , ... , x_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img351.png"
 ALT="$\{ x_1 , ... , x_k \}$">.
If <B><I>k</I>=1</B>, we instead write more
simply <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img321.png"
 ALT="$\{ \hat x \}$">
and <IMG
 WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img322.png"
 ALT="$\{ x \}$">.
When <B><I>k</I>=1</B>, we defined
the angle 
<!-- MATH
 $\theta (\hat{\cal S}, {\cal S})$
 -->
<IMG
 WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img357.png"
 ALT="$\theta (\hat{\cal S}, {\cal S})$">
between
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
and <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
as the acute angle
between <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
and <B><I>x</I></B>.
When <B><I>k</I>&gt;1</B>, we define the acute angle between <IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
and
<IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
as the largest acute angle between any vector <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
in
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">,
and the closest vector <B><I>x</I></B> in <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
to <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">:

<P>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="230" HEIGHT="53" BORDER="0"
 SRC="img358.png"
 ALT="\begin{eqnarray*}
\theta (\hat{\cal S}, {\cal S}) &amp; \equiv &amp;
\max_{\hat{x} \in {...
...min_{x \in {\cal S} \atop x \neq 0}
\theta ( \hat{x},x ) \; \; .
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
LAPACK routines which compute subspaces return
vectors 
<!-- MATH
 $\{ \hat{x}_1 , ... , \hat{x}_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img355.png"
 ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
spanning a subspace
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
which are <EM>orthonormal</EM>. This means the
<B><I>n</I></B>-by-<B><I>k</I></B> matrix 
<!-- MATH
 $\hat{X}=[\hat{x}_1 , ... , \hat{x}_k]$
 -->
<IMG
 WIDTH="119" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img359.png"
 ALT="$\hat{X}=[\hat{x}_1 , ... , \hat{x}_k]$">
satisfies 
<!-- MATH
 $\hat{X}^H \hat{X} = I$
 -->
<IMG
 WIDTH="81" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img360.png"
 ALT="$\hat{X}^H \hat{X} = I$">.
Suppose also that
the vectors 
<!-- MATH
 $\{ x_1 , ... , x_k \}$
 -->
<IMG
 WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img351.png"
 ALT="$\{ x_1 , ... , x_k \}$">
spanning <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
are orthonormal, so 
<!-- MATH
 $X = [ x_1 , ... , x_k ]$
 -->
<B><I>X</I> = [ <I>x</I><SUB>1</SUB> , ... , <I>x</I><SUB><I>k</I></SUB> ]</B> also
satisfies <B><I>X</I><SUP><I>H</I></SUP><I>X</I> = <I>I</I></B>.
Then there is a simple expression for the angle between
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
and <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">:
<A NAME="10287"></A>
<A NAME="10288"></A>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) = \arccos \sigma_{\min} ( \hat{X}^H X ) \; \; .
\end{displaymath}
 -->


<IMG
 WIDTH="231" HEIGHT="31" BORDER="0"
 SRC="img361.png"
 ALT="\begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) = \arccos \sigma_{\min} ( \hat{X}^H X ) \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
For example, if
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\hat{X} = \left( \begin{array}{cc} -.79996 & .60005 \\-.59997 & -.79990 \\-.01 & -.01 \end{array} \right) 
\; \; {\rm and} \; \;
X = \left( \begin{array}{cc} 1 & 0 \\0 & 1 \\0 & 0 \end{array} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="385" HEIGHT="73" BORDER="0"
 SRC="img362.png"
 ALT="\begin{displaymath}
\hat{X} = \left( \begin{array}{cc} -.79996 &amp; .60005 \\ -.599...
...\begin{array}{cc} 1 &amp; 0 \\ 0 &amp; 1 \\ 0 &amp; 0 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then 
<!-- MATH
 $\theta ( \hat{\cal S}, {\cal S} ) = .01414$
 -->
<IMG
 WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img363.png"
 ALT="$\theta ( \hat{\cal S}, {\cal S} ) = .01414$">.

<P>
As stated above, all our bounds will contain a factor
<B><I>p</I>(<I>n</I>)</B> (or <B><I>p</I>(<I>m</I>,<I>n</I>)</B>), which measure how roundoff errors can grow
as a function of matrix dimension <B><I>n</I></B> (or <B><I>m</I></B> and <B><I>m</I></B>).
In practice, the true error usually grows just linearly with <B><I>n</I></B>,
but we can generally only prove much weaker bounds of the form <B><I>p</I>(<I>n</I>)=<I>O</I>(<I>n</I><SUP>3</SUP>)</B>.
This is because we can not rule out the extremely unlikely possibility of rounding
errors all adding together instead of canceling on average. Using
<B><I>p</I>(<I>n</I>) = <I>O</I>(<I>n</I><SUP>3</SUP>)</B> would give very pessimistic and unrealistic bounds, especially
for large <B><I>n</I></B>, so we content ourselves with describing <B><I>p</I>(<I>n</I>)</B> as a
``modestly growing'' polynomial function of <B><I>n</I></B>. Using <B><I>p</I>(<I>n</I>)=10<I>n</I></B> in
the error bound formulas will often give a reasonable bound.
For detailed derivations of various
<B><I>p</I>(<I>n</I>)</B>, see [<A
 HREF="node151.html#GVL2">55</A>,<A
 HREF="node151.html#higham96">67</A>,<A
 HREF="node151.html#wilkinson1">103</A>].

<P>
There is also one situation where <B><I>p</I>(<I>n</I>)</B> can grow as large as <B>2<SUP><I>n</I>-1</SUP></B>:
Gaussian elimination. This typically  occurs only on specially constructed
matrices presented in numerical analysis courses [<A
 HREF="node151.html#wilkinson1">103</A>, p. 212][<A
 HREF="node151.html#higham96">67</A>].
However, the expert drivers for solving linear systems, xGESVX and xGBSVX,<A NAME="10303"></A><A NAME="10304"></A><A NAME="10305"></A><A NAME="10306"></A><A NAME="10307"></A><A NAME="10308"></A><A NAME="10309"></A><A NAME="10310"></A>
provide error bounds incorporating <B><I>p</I>(<I>n</I>)</B>, and so this rare possibility
can be detected.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5257"
 HREF="node77.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5251"
 HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5247"
 HREF="node75.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5253"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5255"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5258"
 HREF="node77.html">Further Details: How Error</A>
<B> Up:</B> <A NAME="tex2html5252"
 HREF="node75.html">How to Measure Errors</A>
<B> Previous:</B> <A NAME="tex2html5248"
 HREF="node75.html">How to Measure Errors</A>
 &nbsp <B>  <A NAME="tex2html5254"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5256"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>