1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: How to Measure Errors</TITLE>
<META NAME="description" CONTENT="Further Details: How to Measure Errors">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node75.html">
<LINK REL="up" HREF="node75.html">
<LINK REL="next" HREF="node77.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5257"
HREF="node77.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5251"
HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5247"
HREF="node75.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5253"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5255"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5258"
HREF="node77.html">Further Details: How Error</A>
<B> Up:</B> <A NAME="tex2html5252"
HREF="node75.html">How to Measure Errors</A>
<B> Previous:</B> <A NAME="tex2html5248"
HREF="node75.html">How to Measure Errors</A>
  <B> <A NAME="tex2html5254"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5256"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03421000000000000000"></A><A NAME="secbackgroundnormnotation"></A>
<BR>
Further Details: How to Measure Errors
</H2>
<P>
<A NAME="10147"></A><A NAME="10148"></A>
The relative error
<!-- MATH
$| \hat{\alpha} - \alpha | / | \alpha |$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img284.png"
ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \alpha \vert$">
in the approximation
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
of the true solution <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img49.png"
ALT="$\alpha$">
has a drawback: it often cannot
be computed directly, because it depends on the unknown quantity
<IMG
WIDTH="25" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img337.png"
ALT="$\vert \alpha \vert$">.
However, we can often instead estimate
<!-- MATH
$| \hat{\alpha} - \alpha | / | \hat{\alpha} |$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img285.png"
ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \hat{\alpha} \vert$">,
since <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img282.png"
ALT="$\hat{\alpha}$">
is
known (it is the output of our algorithm). Fortunately, these two
quantities are necessarily close together, provided either one is small,
which is the only time they provide a useful bound anyway. For example,
<!-- MATH
$| \hat{\alpha} - \alpha | / | \hat{\alpha} | \leq .1$
-->
<IMG
WIDTH="124" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img338.png"
ALT="$\vert \hat{\alpha} - \alpha \vert / \vert \hat{\alpha} \vert \leq .1$">
implies
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
.9 \frac{| \hat{\alpha} - \alpha |}{| \hat{\alpha} |} \leq
\frac{| \hat{\alpha} - \alpha |}{| {\alpha} |} \leq
1.1 \frac{| \hat{\alpha} - \alpha |}{| \hat{\alpha} |} \; \; ,
\end{displaymath}
-->
<IMG
WIDTH="267" HEIGHT="48" BORDER="0"
SRC="img339.png"
ALT="\begin{displaymath}
.9 \frac{\vert \hat{\alpha} - \alpha \vert}{\vert \hat{\alph...
...\hat{\alpha} - \alpha \vert}{\vert \hat{\alpha} \vert} \; \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
so they can be used interchangeably.
<P>
Table <A HREF="node75.html#tabnorms">4.2</A> contains a variety of norms we will use to
measure errors.
These norms have the properties that
<!-- MATH
$\|Ax\|_p \leq \|A\|_p \cdot \|x\|_p$
-->
<IMG
WIDTH="161" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img340.png"
ALT="$\Vert Ax\Vert _p \leq \Vert A\Vert _p \cdot \Vert x\Vert _p$">,
and
<!-- MATH
$\|AB\|_p \leq \|A\|_p \cdot \|B\|_p$
-->
<IMG
WIDTH="170" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img341.png"
ALT="$\Vert AB\Vert _p \leq \Vert A\Vert _p \cdot \Vert B\Vert _p$">,
where <B><I>p</I></B> is one of
<B>1</B>, <B>2</B>, <IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$">,
and <B><I>F</I></B>. These properties are useful for deriving
error bounds.
<P>
An error bound that uses a given norm may be changed into an error bound
that uses another norm. This is accomplished by multiplying the first
error bound by an appropriate function of the problem dimension.
Table <A HREF="node76.html#tableVectorNormFpq">4.3</A> gives the
factors <B><I>f</I><SUB><I>pq</I></SUB>(<I>n</I>)</B> such that
<!-- MATH
$\| x \|_p \leq f_{pq}(n) \|x \|_q$
-->
<IMG
WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img342.png"
ALT="$\Vert x \Vert _p \leq f_{pq}(n) \Vert x \Vert _q$">,
where
<B><I>n</I></B> is the dimension of <B><I>x</I></B>.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tableVectorNormFpq"></A>
<P>
<DIV ALIGN="CENTER">
Values of <B><I>f</I><SUB><I>pq</I></SUB>(<I>n</I>)</B> such that
<!-- MATH
$\| x \|_p \leq f_{pq}(n) \|x \|_q$
-->
<IMG
WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img342.png"
ALT="$\Vert x \Vert _p \leq f_{pq}(n) \Vert x \Vert _q$">,
where <B><I>x</I></B> is an <B><I>n</I></B>-vector
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="10167"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.3:</STRONG>
Bounding One Vector Norm in Terms of Another</CAPTION>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER" COLSPAN=3><B><I>q</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER" COLSPAN=1>1</TD>
<TD ALIGN="CENTER" COLSPAN=1>2</TD>
<TD ALIGN="CENTER" COLSPAN=1><IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$"></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER"><B><I>n</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"><B><I>p</I></B></TD>
<TD ALIGN="CENTER">2</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"><IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
Table <A HREF="node76.html#tableMatrixNormFpq">4.4</A> gives the
factors <B><I>f</I><SUB><I>pq</I></SUB>(<I>m</I>,<I>n</I>)</B> such that
<!-- MATH
$\| A \|_p \leq f_{pq}(m,n) \| A \|_q$
-->
<IMG
WIDTH="173" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img344.png"
ALT="$\Vert A \Vert _p \leq f_{pq}(m,n) \Vert A \Vert _q$">,
where
<B><I>A</I></B> is <B><I>m</I></B>-by-<B><I>n</I></B>.
<P>
<BR>
<DIV ALIGN="CENTER">
<A NAME="tableMatrixNormFpq"></A>
<P>
<DIV ALIGN="CENTER">
Values of <B><I>f</I><SUB><I>pq</I></SUB>(<I>m</I>,<I>n</I>)</B> such that
<!-- MATH
$\| A \|_p \leq f_{pq}(m,n) \| A \|_q$
-->
<IMG
WIDTH="173" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img344.png"
ALT="$\Vert A \Vert _p \leq f_{pq}(m,n) \Vert A \Vert _q$">,
where <B><I>A</I></B> is <B><I>m</I></B>-by-<B><I>n</I></B>
</DIV>
<P>
<DIV ALIGN="CENTER"><A NAME="10197"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.4:</STRONG>
Bounding One Matrix Norm in Terms of Another</CAPTION>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER" COLSPAN=4><B><I>q</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER" COLSPAN=1>1</TD>
<TD ALIGN="CENTER" COLSPAN=1>2</TD>
<TD ALIGN="CENTER" COLSPAN=1><B><I>F</I></B></TD>
<TD ALIGN="CENTER" COLSPAN=1><IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$"></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img345.png"
ALT="$\sqrt{m}$"></TD>
<TD ALIGN="CENTER"><IMG
WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img345.png"
ALT="$\sqrt{m}$"></TD>
<TD ALIGN="CENTER"><B><I>m</I></B></TD>
</TR>
<TR><TD ALIGN="CENTER"><B><I>p</I></B></TD>
<TD ALIGN="CENTER">2</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img345.png"
ALT="$\sqrt{m}$"></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"><B><I>F</I></B></TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">
<!-- MATH
$\sqrt{\min (m,n)}$
-->
<IMG
WIDTH="96" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img346.png"
ALT="$\sqrt{\min (m,n)}$"></TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER"><IMG
WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img345.png"
ALT="$\sqrt{m}$"></TD>
</TR>
<TR><TD ALIGN="CENTER"> </TD>
<TD ALIGN="CENTER"><IMG
WIDTH="22" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img311.png"
ALT="$\infty$"></TD>
<TD ALIGN="CENTER"><B><I>n</I></B></TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER"><IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img343.png"
ALT="$\sqrt{n}$"></TD>
<TD ALIGN="CENTER">1</TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<P>
The two-norm of <B><I>A</I></B>, <B>|A|<SUB>2</SUB></B>, is also called the <B>spectral
norm</B> of <B><I>A</I></B>, and is equal to the <B>largest singular value</B>
<!-- MATH
$\sigma_{\max}(A)$
-->
<IMG
WIDTH="67" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img347.png"
ALT="$\sigma_{\max}(A)$">
of <B><I>A</I></B>.
We shall also need to refer to the <B>smallest singular value</B>
<!-- MATH
$\sigma_{\min}(A)$
-->
<IMG
WIDTH="64" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img348.png"
ALT="$\sigma_{\min}(A)$">
of <B><I>A</I></B>; its value can be defined in a similar way to
the definition of the two-norm in Table <A HREF="node75.html#tabnorms">4.2</A>, namely as
<!-- MATH
$\min_{x \neq 0} \|Ax\|_2 / \|x\|_2$
-->
<IMG
WIDTH="154" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img349.png"
ALT="$\min_{x \neq 0} \Vert Ax\Vert _2 / \Vert x\Vert _2$">
when <B><I>A</I></B>
has at least as many rows as columns, and defined as
<!-- MATH
$\min_{x \neq 0} \|A^Tx\|_2 / \|x\|_2$
-->
<IMG
WIDTH="164" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img350.png"
ALT="$\min_{x \neq 0} \Vert A^Tx\Vert _2 / \Vert x\Vert _2$">
when <B><I>A</I></B> has more
columns than rows. The two-norm,
Frobenius norm<A NAME="10242"></A><A NAME="10243"></A>,
and singular values of a matrix do not change
if the matrix is multiplied by a real orthogonal (or complex unitary) matrix.
<P>
Now we define <EM>subspaces</EM> spanned by more than one vector,
and <EM>angles between subspaces</EM>.
<A NAME="10246"></A>
<A NAME="10247"></A>
<A NAME="10248"></A>
Given a set of <B><I>k</I></B>
<B><I>n</I></B>-dimensional vectors
<!-- MATH
$\{ x_1 , ... , x_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img351.png"
ALT="$\{ x_1 , ... , x_k \}$">,
they determine
a subspace <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
consisting of all their possible linear combinations
<!-- MATH
$\{ \sum_{i=1}^k \beta_i x_i$
-->
<IMG
WIDTH="86" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
SRC="img352.png"
ALT="$\{ \sum_{i=1}^k \beta_i x_i$">,
<IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img73.png"
ALT="$\beta_i$">
scalars <B>}</B>. We also
say that
<!-- MATH
$\{ x_1 , ... , x_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img351.png"
ALT="$\{ x_1 , ... , x_k \}$">
<EM>spans</EM> <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">.
The difficulty in measuring the difference between subspaces is that
the sets of vectors spanning them are not unique.
For example, <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img322.png"
ALT="$\{ x \}$">,
<IMG
WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img353.png"
ALT="$\{ -x \}$">
and <IMG
WIDTH="40" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img354.png"
ALT="$\{ 2x \}$">
all determine the
same subspace.
This means we cannot simply compare the subspaces spanned by
<!-- MATH
$\{ \hat{x}_1 , ... , \hat{x}_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img355.png"
ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
and
<!-- MATH
$\{ x_1 , ... , x_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img351.png"
ALT="$\{ x_1 , ... , x_k \}$">
by
comparing each <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img356.png"
ALT="$\hat{x}_i$">
to <B><I>x</I><SUB><I>i</I></SUB></B>. Instead, we will measure the <EM>angle</EM>
between the subspaces, which is independent of the spanning set
of vectors. Suppose subspace <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
is spanned by
<!-- MATH
$\{ \hat{x}_1 , ... , \hat{x}_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img355.png"
ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
and that subspace <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
is spanned by
<!-- MATH
$\{ x_1 , ... , x_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img351.png"
ALT="$\{ x_1 , ... , x_k \}$">.
If <B><I>k</I>=1</B>, we instead write more
simply <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img321.png"
ALT="$\{ \hat x \}$">
and <IMG
WIDTH="32" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img322.png"
ALT="$\{ x \}$">.
When <B><I>k</I>=1</B>, we defined
the angle
<!-- MATH
$\theta (\hat{\cal S}, {\cal S})$
-->
<IMG
WIDTH="58" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img357.png"
ALT="$\theta (\hat{\cal S}, {\cal S})$">
between
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
and <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
as the acute angle
between <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
and <B><I>x</I></B>.
When <B><I>k</I>>1</B>, we define the acute angle between <IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
and
<IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
as the largest acute angle between any vector <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
in
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">,
and the closest vector <B><I>x</I></B> in <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
to <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">:
<P>
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="230" HEIGHT="53" BORDER="0"
SRC="img358.png"
ALT="\begin{eqnarray*}
\theta (\hat{\cal S}, {\cal S}) & \equiv &
\max_{\hat{x} \in {...
...min_{x \in {\cal S} \atop x \neq 0}
\theta ( \hat{x},x ) \; \; .
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">
LAPACK routines which compute subspaces return
vectors
<!-- MATH
$\{ \hat{x}_1 , ... , \hat{x}_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img355.png"
ALT="$\{ \hat{x}_1 , ... , \hat{x}_k \}$">
spanning a subspace
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
which are <EM>orthonormal</EM>. This means the
<B><I>n</I></B>-by-<B><I>k</I></B> matrix
<!-- MATH
$\hat{X}=[\hat{x}_1 , ... , \hat{x}_k]$
-->
<IMG
WIDTH="119" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img359.png"
ALT="$\hat{X}=[\hat{x}_1 , ... , \hat{x}_k]$">
satisfies
<!-- MATH
$\hat{X}^H \hat{X} = I$
-->
<IMG
WIDTH="81" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img360.png"
ALT="$\hat{X}^H \hat{X} = I$">.
Suppose also that
the vectors
<!-- MATH
$\{ x_1 , ... , x_k \}$
-->
<IMG
WIDTH="88" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img351.png"
ALT="$\{ x_1 , ... , x_k \}$">
spanning <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
are orthonormal, so
<!-- MATH
$X = [ x_1 , ... , x_k ]$
-->
<B><I>X</I> = [ <I>x</I><SUB>1</SUB> , ... , <I>x</I><SUB><I>k</I></SUB> ]</B> also
satisfies <B><I>X</I><SUP><I>H</I></SUP><I>X</I> = <I>I</I></B>.
Then there is a simple expression for the angle between
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
and <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">:
<A NAME="10287"></A>
<A NAME="10288"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) = \arccos \sigma_{\min} ( \hat{X}^H X ) \; \; .
\end{displaymath}
-->
<IMG
WIDTH="231" HEIGHT="31" BORDER="0"
SRC="img361.png"
ALT="\begin{displaymath}
\theta ( \hat{\cal S}, {\cal S} ) = \arccos \sigma_{\min} ( \hat{X}^H X ) \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
For example, if
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\hat{X} = \left( \begin{array}{cc} -.79996 & .60005 \\-.59997 & -.79990 \\-.01 & -.01 \end{array} \right)
\; \; {\rm and} \; \;
X = \left( \begin{array}{cc} 1 & 0 \\0 & 1 \\0 & 0 \end{array} \right)
\end{displaymath}
-->
<IMG
WIDTH="385" HEIGHT="73" BORDER="0"
SRC="img362.png"
ALT="\begin{displaymath}
\hat{X} = \left( \begin{array}{cc} -.79996 & .60005 \\ -.599...
...\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then
<!-- MATH
$\theta ( \hat{\cal S}, {\cal S} ) = .01414$
-->
<IMG
WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img363.png"
ALT="$\theta ( \hat{\cal S}, {\cal S} ) = .01414$">.
<P>
As stated above, all our bounds will contain a factor
<B><I>p</I>(<I>n</I>)</B> (or <B><I>p</I>(<I>m</I>,<I>n</I>)</B>), which measure how roundoff errors can grow
as a function of matrix dimension <B><I>n</I></B> (or <B><I>m</I></B> and <B><I>m</I></B>).
In practice, the true error usually grows just linearly with <B><I>n</I></B>,
but we can generally only prove much weaker bounds of the form <B><I>p</I>(<I>n</I>)=<I>O</I>(<I>n</I><SUP>3</SUP>)</B>.
This is because we can not rule out the extremely unlikely possibility of rounding
errors all adding together instead of canceling on average. Using
<B><I>p</I>(<I>n</I>) = <I>O</I>(<I>n</I><SUP>3</SUP>)</B> would give very pessimistic and unrealistic bounds, especially
for large <B><I>n</I></B>, so we content ourselves with describing <B><I>p</I>(<I>n</I>)</B> as a
``modestly growing'' polynomial function of <B><I>n</I></B>. Using <B><I>p</I>(<I>n</I>)=10<I>n</I></B> in
the error bound formulas will often give a reasonable bound.
For detailed derivations of various
<B><I>p</I>(<I>n</I>)</B>, see [<A
HREF="node151.html#GVL2">55</A>,<A
HREF="node151.html#higham96">67</A>,<A
HREF="node151.html#wilkinson1">103</A>].
<P>
There is also one situation where <B><I>p</I>(<I>n</I>)</B> can grow as large as <B>2<SUP><I>n</I>-1</SUP></B>:
Gaussian elimination. This typically occurs only on specially constructed
matrices presented in numerical analysis courses [<A
HREF="node151.html#wilkinson1">103</A>, p. 212][<A
HREF="node151.html#higham96">67</A>].
However, the expert drivers for solving linear systems, xGESVX and xGBSVX,<A NAME="10303"></A><A NAME="10304"></A><A NAME="10305"></A><A NAME="10306"></A><A NAME="10307"></A><A NAME="10308"></A><A NAME="10309"></A><A NAME="10310"></A>
provide error bounds incorporating <B><I>p</I>(<I>n</I>)</B>, and so this rare possibility
can be detected.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5257"
HREF="node77.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5251"
HREF="node75.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5247"
HREF="node75.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5253"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5255"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5258"
HREF="node77.html">Further Details: How Error</A>
<B> Up:</B> <A NAME="tex2html5252"
HREF="node75.html">How to Measure Errors</A>
<B> Previous:</B> <A NAME="tex2html5248"
HREF="node75.html">How to Measure Errors</A>
  <B> <A NAME="tex2html5254"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5256"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|