1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Standard Error Analysis</TITLE>
<META NAME="description" CONTENT="Standard Error Analysis">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node79.html">
<LINK REL="previous" HREF="node77.html">
<LINK REL="up" HREF="node77.html">
<LINK REL="next" HREF="node79.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5287"
HREF="node79.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5281"
HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5275"
HREF="node77.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5283"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5285"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5288"
HREF="node79.html">Improved Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5282"
HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5276"
HREF="node77.html">Further Details: How Error</A>
  <B> <A NAME="tex2html5284"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5286"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03431000000000000000"></A><A NAME="secbackwarderror"></A>
<BR>
Standard Error Analysis
</H2>
<P>
<A NAME="10315"></A>
We illustrate standard error analysis with the simple example of
evaluating the scalar function <B><I>y</I>=<I>f</I>(<I>z</I>)</B>. Let the output of the
subroutine which implements <B><I>f</I>(<I>z</I>)</B> be denoted <IMG
WIDTH="49" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img364.png"
ALT="${\rm alg}(z)$">;
this includes
the effects of roundoff. If
<!-- MATH
${\rm alg}(z) = f(z+\delta)$
-->
<IMG
WIDTH="135" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img365.png"
ALT="${\rm alg}(z) = f(z+\delta)$">
where <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
is small,
then we say <IMG
WIDTH="27" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img367.png"
ALT="${\rm alg}$">
is a <B>backward stable</B>
<A NAME="10317"></A>
<A NAME="10318"></A>
algorithm for <B><I>f</I></B>,
or that the <B>backward error</B> <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
is small.
<A NAME="10320"></A>
<A NAME="10321"></A>
In other words, <IMG
WIDTH="49" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img364.png"
ALT="${\rm alg}(z)$">
is the
exact value of <B><I>f</I></B> at a slightly perturbed input <IMG
WIDTH="43" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img368.png"
ALT="$z+\delta$">.<A NAME="tex2html2014"
HREF="footnode.html#foot10322"><SUP>4.5</SUP></A>
<P>
Suppose now that <B><I>f</I></B> is a smooth function, so that
we may approximate it near <B><I>z</I></B> by a straight line:
<!-- MATH
$f(z+\delta) \approx f(z) + f'(z) \cdot \delta$
-->
<IMG
WIDTH="203" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img371.png"
ALT="$f(z+\delta) \approx f(z) + f'(z) \cdot \delta$">.
Then we have the simple error estimate
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\rm alg}(z)-f(z) = f(z+\delta) - f(z) \approx f'(z) \cdot \delta .
\end{displaymath}
-->
<IMG
WIDTH="323" HEIGHT="31" BORDER="0"
SRC="img372.png"
ALT="\begin{displaymath}
{\rm alg}(z)-f(z) = f(z+\delta) - f(z) \approx f'(z) \cdot \delta .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Thus, if <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
is small, and the derivative <B><I>f</I>'(<I>z</I>)</B> is
moderate, the error
<!-- MATH
${\rm alg}(z)-f(z)$
-->
<IMG
WIDTH="104" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img373.png"
ALT="${\rm alg}(z)-f(z)$">
will be small<A NAME="tex2html2015"
HREF="footnode.html#foot10323"><SUP>4.6</SUP></A>.
This is often written
in the similar form
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left| \frac{{\rm alg}(z)-f(z)}{f(z)} \right|
\approx
\left| \frac{f'(z) \cdot z}{f(z)} \right| \cdot
\left| \frac{\delta}{z} \right| \equiv \kappa (f,z)
\cdot \left| \frac{\delta}{z} \right|
.
\end{displaymath}
-->
<IMG
WIDTH="360" HEIGHT="48" BORDER="0"
SRC="img374.png"
ALT="\begin{displaymath}
\left\vert \frac{{\rm alg}(z)-f(z)}{f(z)} \right\vert
\appro...
...iv \kappa (f,z)
\cdot \left\vert \frac{\delta}{z} \right\vert
.\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
This approximately bounds the <B>relative error</B>
<A NAME="10333"></A><A NAME="10334"></A>
<!-- MATH
$\left| \frac{{\rm alg}(z)-f(z)}{f(z)} \right|$
-->
<IMG
WIDTH="90" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img375.png"
ALT="$\left\vert \frac{{\rm alg}(z)-f(z)}{f(z)} \right\vert$">
by the product of
the <B>condition number of</B>
<B><I>f</I></B> <B>at</B> <B><I>z</I></B>, <IMG
WIDTH="54" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img376.png"
ALT="$\kappa (f,z)$">,
and the
<B>relative backward error</B>
<!-- MATH
$|\frac{\delta}{z}|$
-->
<IMG
WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
SRC="img377.png"
ALT="$\vert\frac{\delta}{z}\vert$">.
<A NAME="10342"></A>
<A NAME="10343"></A>
Thus we get an error bound by multiplying a
condition<A NAME="10344"></A> number and
a backward error (or bounds for these quantities). We call a problem
<B>ill-conditioned</B><A NAME="10346"></A> if its condition number is large,
and <B>ill-posed</B><A NAME="10348"></A>
if its condition number is infinite (or does not exist)<A NAME="tex2html2016"
HREF="footnode.html#foot10349"><SUP>4.7</SUP></A>.
<P>
If <B><I>f</I></B> and <B><I>z</I></B> are vector quantities, then <B><I>f</I>'(<I>z</I>)</B> is a matrix
(the Jacobian). So instead of using absolute values as before,
we now measure <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
by a vector norm <IMG
WIDTH="30" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img378.png"
ALT="$\Vert \delta \Vert$">
and <B><I>f</I>'(<I>z</I>)</B>
by a matrix norm <B>|f'(<I>z</I>)|</B>. The conventional (and coarsest) error analysis
uses a norm such as the infinity norm. We therefore call
this <B>normwise backward stability</B>.
<A NAME="10351"></A>
<A NAME="10352"></A>
For example, a normwise stable
method for solving a system of linear equations <B><I>Ax</I>=<I>b</I></B> will
produce a solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
satisfying
<!-- MATH
$(A+E)\hat{x}=b+f$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img379.png"
ALT="$(A+E)\hat{x}=b+f$">
where
<!-- MATH
$\|E\|_{\infty}/ \|A\|_{\infty}$
-->
<IMG
WIDTH="104" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img380.png"
ALT="$\Vert E\Vert _{\infty}/ \Vert A\Vert _{\infty}$">
and
<!-- MATH
$\|f\|_{\infty}/ \|b\|_{\infty}$
-->
<IMG
WIDTH="95" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img381.png"
ALT="$\Vert f\Vert _{\infty}/ \Vert b\Vert _{\infty}$">
are both small (close to machine epsilon).
In this case the condition number is
<!-- MATH
$\kappa_{\infty}(A) = \|A\|_{\infty}\cdot \|A^{-1}\|_{\infty}$
-->
<IMG
WIDTH="199" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img382.png"
ALT="$\kappa_{\infty}(A) = \Vert A\Vert _{\infty}\cdot \Vert A^{-1}\Vert _{\infty}$">
(see section <A HREF="node80.html#secAx_b">4.4</A> below).
<A NAME="10355"></A>
<P>
Almost all of the algorithms in LAPACK (as well as LINPACK and EISPACK)
are stable in the sense just described<A NAME="tex2html2017"
HREF="footnode.html#foot13140"><SUP>4.8</SUP></A>:
when applied to a matrix <B><I>A</I></B>
they produce the exact result for a slightly different matrix <B><I>A</I>+<I>E</I></B>,
where
<!-- MATH
$\|E\|_{\infty}/ \|A\|_{\infty}$
-->
<IMG
WIDTH="104" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img380.png"
ALT="$\Vert E\Vert _{\infty}/ \Vert A\Vert _{\infty}$">
is of order <IMG
WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$\epsilon$">.
In a certain sense, a user can hardly ask for more, provided the
data is at all uncertain.
<P>
It is often possible to compute the norm <B>|E|</B> of the actual backward
error by computing a residual <B><I>r</I></B>, such as <B><I>r</I>=<I>Ax</I>-<I>b</I></B> or
<!-- MATH
$r=Ax - \lambda x$
-->
<IMG
WIDTH="100" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img386.png"
ALT="$r=Ax - \lambda x$">,
and suitably scaling its norm <B>|r|</B>. The expert driver routines for
solving <B><I>Ax</I>=<I>b</I></B> do this, for example.
For details see [<A
HREF="node151.html#GVL2">55</A>,<A
HREF="node151.html#higham96">67</A>,<A
HREF="node151.html#parlett">85</A>,<A
HREF="node151.html#stewartsun90">95</A>].
<P>
Condition numbers may be expensive to compute
exactly.
For example, it costs about
<!-- MATH
$\frac{2}{3} n^3$
-->
<IMG
WIDTH="33" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img387.png"
ALT="$\frac{2}{3} n^3$">
operations to solve <B><I>Ax</I>=<I>b</I></B>
for a general matrix <B><I>A</I></B>, and computing
<!-- MATH
$\kappa_{\infty}(A)$
-->
<IMG
WIDTH="55" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img388.png"
ALT="$\kappa_{\infty}(A)$">
<EM>exactly</EM> costs
an additional
<!-- MATH
$\frac{4}{3} n^3$
-->
<IMG
WIDTH="33" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img389.png"
ALT="$\frac{4}{3} n^3$">
operations, or twice as much.
But
<!-- MATH
$\kappa_{\infty}(A)$
-->
<IMG
WIDTH="55" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img388.png"
ALT="$\kappa_{\infty}(A)$">
can be <EM>estimated</EM> in only <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B>
operations beyond those
<!-- MATH
$\frac{2}{3} n^3$
-->
<IMG
WIDTH="33" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img387.png"
ALT="$\frac{2}{3} n^3$">
necessary for solution,
a tiny extra cost. Therefore, most of LAPACK's condition numbers
and error bounds are based on estimated condition
numbers<A NAME="10373"></A>, using the method
of [<A
HREF="node151.html#hager84">59</A>,<A
HREF="node151.html#higham1">62</A>,<A
HREF="node151.html#nick2">63</A>].
The price one pays for using an estimated rather than an
exact condition number is occasional
(but very rare) underestimates of the true error; years of experience
attest to the reliability of our estimators, although examples
where they badly underestimate the error can be constructed [<A
HREF="node151.html#higham90">65</A>].
Note that once a condition estimate is large enough,
(usually
<!-- MATH
$O( 1/ \epsilon )$
-->
<IMG
WIDTH="56" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img390.png"
ALT="$O( 1/ \epsilon )$">), it confirms that the computed
answer may be completely inaccurate, and so the exact magnitude
of the condition estimate conveys little information.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5287"
HREF="node79.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5281"
HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5275"
HREF="node77.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5283"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5285"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5288"
HREF="node79.html">Improved Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5282"
HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5276"
HREF="node77.html">Further Details: How Error</A>
  <B> <A NAME="tex2html5284"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5286"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|