File: node79.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (227 lines) | stat: -rw-r--r-- 7,689 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Improved Error Bounds</TITLE>
<META NAME="description" CONTENT="Improved Error Bounds">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node78.html">
<LINK REL="up" HREF="node77.html">
<LINK REL="next" HREF="node80.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5299"
 HREF="node80.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5293"
 HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5289"
 HREF="node78.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5295"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5297"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5300"
 HREF="node80.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5294"
 HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5290"
 HREF="node78.html">Standard Error Analysis</A>
 &nbsp <B>  <A NAME="tex2html5296"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5298"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03432000000000000000"></A><A NAME="seccomponentwise"></A>
<BR>
Improved Error Bounds
</H2>

<P>
The standard error analysis just outlined has a drawback: by using the
infinity norm 
<!-- MATH
 $\| \delta \|_{\infty}$
 -->
<IMG
 WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img391.png"
 ALT="$\Vert \delta \Vert _{\infty}$">
to measure the backward error,
entries of equal magnitude in <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img366.png"
 ALT="$\delta$">
contribute equally to the final
error bound 
<!-- MATH
 $\kappa (f,z) (\| \delta \|/\|z\|)$
 -->
<IMG
 WIDTH="128" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img392.png"
 ALT="$\kappa (f,z) (\Vert \delta \Vert/\Vert z\Vert)$">.
This means that
if <B><I>z</I></B> is sparse or has some very tiny entries, a normwise backward
stable algorithm may make very large changes in these entries
compared to their original values. If these tiny values are known accurately
by the user, these errors may be unacceptable,
or the error bounds may be unacceptably large.

<P>
For example, consider solving a diagonal system of linear equations <B><I>Ax</I>=<I>b</I></B>.
Each component of the solution is computed accurately by
Gaussian elimination: 
<!-- MATH
 $x_i = b_i / a_{ii}$
 -->
<B><I>x</I><SUB><I>i</I></SUB> = <I>b</I><SUB><I>i</I></SUB> / <I>a</I><SUB><I>ii</I></SUB></B>.
The usual error bound is approximately

<!-- MATH
 $\epsilon \cdot \kappa_{\infty}(A) = \epsilon \cdot \max_i |a_{ii}| / \min_i |a_{ii}|$
 -->
<IMG
 WIDTH="265" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img393.png"
 ALT="$\epsilon \cdot \kappa_{\infty}(A) = \epsilon \cdot \max_i \vert a_{ii}\vert / \min_i \vert a_{ii}\vert$">,
which can arbitrarily overestimate the true error, <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">,
if at least one
<B><I>a</I><SUB><I>ii</I></SUB></B> is tiny and another one is large.

<P>
LAPACK addresses this inadequacy by providing some algorithms
whose backward error <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img366.png"
 ALT="$\delta$">
is a tiny relative change in
each component of <B><I>z</I></B>: 
<!-- MATH
 $| \delta_{i} | = O( \epsilon ) | z_{i} |$
 -->
<IMG
 WIDTH="108" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img394.png"
 ALT="$\vert \delta_{i} \vert = O( \epsilon ) \vert z_{i} \vert$">.
This backward error retains both the sparsity structure of <B><I>z</I></B> as
well as the information in tiny entries. These algorithms are therefore
called <B>componentwise relatively backward stable</B>.
Furthermore, computed error bounds reflect this stronger form of backward
error<A NAME="tex2html2039"
 HREF="footnode.html#foot13141"><SUP>4.9</SUP></A>.
<A NAME="10386"></A>
<A NAME="10387"></A>
<A NAME="10388"></A>
<A NAME="10389"></A>
<A NAME="10390"></A>

<P>
If the input data has independent uncertainty in each component,
each component must have at least a small <EM>relative</EM> uncertainty,
since each is a floating-point number.
In this case, the extra uncertainty contributed by the algorithm is not much
worse than the uncertainty in the input data, so
one could say the answer provided by a componentwise
relatively backward stable algorithm is as accurate as the data
warrants [<A
 HREF="node151.html#lawn20">1</A>].

<P>
When solving <B><I>Ax</I>=<I>b</I></B> using expert driver xyySVX or computational routine xyyRFS,
for example, we almost always
compute  <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
satisfying 
<!-- MATH
 $(A+E) \hat{x}= b+f$
 -->
<IMG
 WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img379.png"
 ALT="$(A+E)\hat{x}=b+f$">,
where
<B><I>e</I><SUB><I>ij</I></SUB></B> is a small relative change in <B><I>a</I><SUB><I>ij</I></SUB></B> and
<B><I>f</I><SUB><I>k</I></SUB></B> is a small relative change in <B><I>b</I><SUB><I>k</I></SUB></B>. In particular, if <B><I>A</I></B> is diagonal,
the corresponding error bound is always tiny, as one would
expect (see the next section).

<P>
LAPACK can achieve this accuracy <A NAME="10395"></A>
for linear equation solving,
the bidiagonal singular value decomposition, and
the symmetric tridiagonal eigenproblem,
and provides facilities for achieving this accuracy for least squares problems.
Future versions of LAPACK will also achieve this
accuracy for other linear algebra problems, as discussed below.

<P>
 
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5299"
 HREF="node80.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5293"
 HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5289"
 HREF="node78.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5295"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5297"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5300"
 HREF="node80.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5294"
 HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5290"
 HREF="node78.html">Standard Error Analysis</A>
 &nbsp <B>  <A NAME="tex2html5296"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5298"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>