1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Improved Error Bounds</TITLE>
<META NAME="description" CONTENT="Improved Error Bounds">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node78.html">
<LINK REL="up" HREF="node77.html">
<LINK REL="next" HREF="node80.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5299"
HREF="node80.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5293"
HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5289"
HREF="node78.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5295"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5297"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5300"
HREF="node80.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5294"
HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5290"
HREF="node78.html">Standard Error Analysis</A>
  <B> <A NAME="tex2html5296"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5298"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03432000000000000000"></A><A NAME="seccomponentwise"></A>
<BR>
Improved Error Bounds
</H2>
<P>
The standard error analysis just outlined has a drawback: by using the
infinity norm
<!-- MATH
$\| \delta \|_{\infty}$
-->
<IMG
WIDTH="45" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img391.png"
ALT="$\Vert \delta \Vert _{\infty}$">
to measure the backward error,
entries of equal magnitude in <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
contribute equally to the final
error bound
<!-- MATH
$\kappa (f,z) (\| \delta \|/\|z\|)$
-->
<IMG
WIDTH="128" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img392.png"
ALT="$\kappa (f,z) (\Vert \delta \Vert/\Vert z\Vert)$">.
This means that
if <B><I>z</I></B> is sparse or has some very tiny entries, a normwise backward
stable algorithm may make very large changes in these entries
compared to their original values. If these tiny values are known accurately
by the user, these errors may be unacceptable,
or the error bounds may be unacceptably large.
<P>
For example, consider solving a diagonal system of linear equations <B><I>Ax</I>=<I>b</I></B>.
Each component of the solution is computed accurately by
Gaussian elimination:
<!-- MATH
$x_i = b_i / a_{ii}$
-->
<B><I>x</I><SUB><I>i</I></SUB> = <I>b</I><SUB><I>i</I></SUB> / <I>a</I><SUB><I>ii</I></SUB></B>.
The usual error bound is approximately
<!-- MATH
$\epsilon \cdot \kappa_{\infty}(A) = \epsilon \cdot \max_i |a_{ii}| / \min_i |a_{ii}|$
-->
<IMG
WIDTH="265" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img393.png"
ALT="$\epsilon \cdot \kappa_{\infty}(A) = \epsilon \cdot \max_i \vert a_{ii}\vert / \min_i \vert a_{ii}\vert$">,
which can arbitrarily overestimate the true error, <IMG
WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$\epsilon$">,
if at least one
<B><I>a</I><SUB><I>ii</I></SUB></B> is tiny and another one is large.
<P>
LAPACK addresses this inadequacy by providing some algorithms
whose backward error <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img366.png"
ALT="$\delta$">
is a tiny relative change in
each component of <B><I>z</I></B>:
<!-- MATH
$| \delta_{i} | = O( \epsilon ) | z_{i} |$
-->
<IMG
WIDTH="108" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img394.png"
ALT="$\vert \delta_{i} \vert = O( \epsilon ) \vert z_{i} \vert$">.
This backward error retains both the sparsity structure of <B><I>z</I></B> as
well as the information in tiny entries. These algorithms are therefore
called <B>componentwise relatively backward stable</B>.
Furthermore, computed error bounds reflect this stronger form of backward
error<A NAME="tex2html2039"
HREF="footnode.html#foot13141"><SUP>4.9</SUP></A>.
<A NAME="10386"></A>
<A NAME="10387"></A>
<A NAME="10388"></A>
<A NAME="10389"></A>
<A NAME="10390"></A>
<P>
If the input data has independent uncertainty in each component,
each component must have at least a small <EM>relative</EM> uncertainty,
since each is a floating-point number.
In this case, the extra uncertainty contributed by the algorithm is not much
worse than the uncertainty in the input data, so
one could say the answer provided by a componentwise
relatively backward stable algorithm is as accurate as the data
warrants [<A
HREF="node151.html#lawn20">1</A>].
<P>
When solving <B><I>Ax</I>=<I>b</I></B> using expert driver xyySVX or computational routine xyyRFS,
for example, we almost always
compute <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
satisfying
<!-- MATH
$(A+E) \hat{x}= b+f$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img379.png"
ALT="$(A+E)\hat{x}=b+f$">,
where
<B><I>e</I><SUB><I>ij</I></SUB></B> is a small relative change in <B><I>a</I><SUB><I>ij</I></SUB></B> and
<B><I>f</I><SUB><I>k</I></SUB></B> is a small relative change in <B><I>b</I><SUB><I>k</I></SUB></B>. In particular, if <B><I>A</I></B> is diagonal,
the corresponding error bound is always tiny, as one would
expect (see the next section).
<P>
LAPACK can achieve this accuracy <A NAME="10395"></A>
for linear equation solving,
the bidiagonal singular value decomposition, and
the symmetric tridiagonal eigenproblem,
and provides facilities for achieving this accuracy for least squares problems.
Future versions of LAPACK will also achieve this
accuracy for other linear algebra problems, as discussed below.
<P>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5299"
HREF="node80.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5293"
HREF="node77.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5289"
HREF="node78.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5295"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5297"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5300"
HREF="node80.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5294"
HREF="node77.html">Further Details: How Error</A>
<B> Previous:</B> <A NAME="tex2html5290"
HREF="node78.html">Standard Error Analysis</A>
  <B> <A NAME="tex2html5296"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5298"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|