1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Error Bounds for Linear Equation Solving</TITLE>
<META NAME="description" CONTENT="Error Bounds for Linear Equation Solving">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node82.html">
<LINK REL="previous" HREF="node77.html">
<LINK REL="up" HREF="node72.html">
<LINK REL="next" HREF="node81.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5313"
HREF="node81.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5307"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5301"
HREF="node79.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5309"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5311"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5314"
HREF="node81.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5308"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5302"
HREF="node79.html">Improved Error Bounds</A>
  <B> <A NAME="tex2html5310"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5312"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03440000000000000000"></A><A NAME="secAx_b"></A>
<BR>
Error Bounds for Linear Equation Solving
</H1>
<P>
<P>
Let <B><I>Ax</I>=<I>b</I></B> be the system to be solved, and <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
the computed
solution. Let <B><I>n</I></B> be the dimension of <B><I>A</I></B>.
An approximate error bound<A NAME="10532"></A>
for <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
may be obtained in one of the following two ways,
depending on whether the solution is computed by a simple driver or
an expert driver:
<P>
<DL COMPACT>
<DT>1.
<DD>Suppose that <B><I>Ax</I>=<I>b</I></B> is solved using the simple driver SGESV
<A NAME="10535"></A>
(subsection <A HREF="node26.html#subsecdrivelineq">2.3.1</A>).
Then the approximate error bound<A NAME="tex2html2046"
HREF="footnode.html#foot13155"><SUP>4.10</SUP></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\| \hat{x} - x \|_{\infty}}{\|x\|_{\infty}} \leq {\tt ERRBD}
\end{displaymath}
-->
<IMG
WIDTH="144" HEIGHT="48" BORDER="0"
SRC="img396.png"
ALT="\begin{displaymath}
\frac{\Vert \hat{x} - x \Vert _{\infty}}{\Vert x\Vert _{\infty}} \leq {\tt ERRBD}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
can be computed by the following code fragment.
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Get infinity-norm of A
ANORM = SLANGE( 'I', N, N, A, LDA, WORK )
* Solve system; The solution X overwrites B
CALL SGESV( N, 1, A, LDA, IPIV, B, LDB, INFO )
IF( INFO.GT.0 ) THEN
PRINT *,'Singular Matrix'
ELSE IF (N .GT. 0) THEN
* Get reciprocal condition number RCOND of A
CALL SGECON( 'I', N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO )
RCOND = MAX( RCOND, EPSMCH )
ERRBD = EPSMCH / RCOND
END IF
</PRE>
<A NAME="10546"></A>
<P>
For example, suppose<A NAME="tex2html2047"
HREF="footnode.html#foot13159"><SUP>4.11</SUP></A>
<!-- MATH
${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
-->
<IMG
WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img397.png"
ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{ccc} 4 & 16000 & 17000 \\2 & 5 & 8 \\3 & 6 & 10 \end{array} \right)
\; \; {\rm and} \; \;
b = \left( \begin{array}{c} 100.1 \\.1 \\.01 \end{array} \right) \; . \; \;
\end{displaymath}
-->
<IMG
WIDTH="384" HEIGHT="73" BORDER="0"
SRC="img398.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{ccc} 4 & 16000 & 17000 \\ 2 & 5 & 8...
...in{array}{c} 100.1 \\ .1 \\ .01 \end{array} \right) \; . \; \;
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then (to 4 decimal places)
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = \left( \begin{array}{c} -.3974 \\-.3349 \\.3211 \end{array} \right) \; , \; \;
\hat{x} = \left( \begin{array}{c} -.3968 \\-.3344 \\.3207 \end{array} \right) \; ,
\end{displaymath}
-->
<IMG
WIDTH="297" HEIGHT="73" BORDER="0"
SRC="img399.png"
ALT="\begin{displaymath}
x = \left( \begin{array}{c} -.3974 \\ -.3349 \\ .3211 \end{a...
...n{array}{c} -.3968 \\ -.3344 \\ .3207 \end{array} \right) \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<!-- MATH
${\tt ANORM} = 3.300 \cdot 10^4$
-->
<IMG
WIDTH="151" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img400.png"
ALT="${\tt ANORM} = 3.300 \cdot 10^4$">,
<!-- MATH
${\tt RCOND} = 3.907 \cdot 10^{-6}$
-->
<IMG
WIDTH="161" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img401.png"
ALT="${\tt RCOND} = 3.907 \cdot 10^{-6}$">,
the true reciprocal condition number
<!-- MATH
$= 3.902 \cdot 10^{-6}$
-->
<IMG
WIDTH="111" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img402.png"
ALT="$= 3.902 \cdot 10^{-6}$">,
<!-- MATH
${\tt ERRBD} = 1.5 \cdot 10^{-2}$
-->
<IMG
WIDTH="144" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img403.png"
ALT="${\tt ERRBD} = 1.5 \cdot 10^{-2}$">,
and the true error
<!-- MATH
$= 1.5 \cdot 10^{-3}$
-->
<IMG
WIDTH="93" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img404.png"
ALT="$= 1.5 \cdot 10^{-3}$">.
<A NAME="10566"></A>
<P>
<DT>2.
<DD>Suppose that <B><I>Ax</I>=<I>b</I></B> is solved using the expert driver SGESVX
(subsection <A HREF="node26.html#subsecdrivelineq">2.3.1</A>).
<A NAME="10568"></A>
This routine provides an explicit error bound <TT>FERR</TT>, measured
with the infinity-norm:
<A NAME="10570"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\| \hat{x} - x \|_{\infty}}{\|x\|_{\infty}} \leq {\tt FERR}
\end{displaymath}
-->
<IMG
WIDTH="135" HEIGHT="48" BORDER="0"
SRC="img405.png"
ALT="\begin{displaymath}
\frac{\Vert \hat{x} - x \Vert _{\infty}}{\Vert x\Vert _{\infty}} \leq {\tt FERR}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
For example, the following code fragment solves
<B><I>Ax</I>=<I>b</I></B> and computes an approximate error bound <TT>FERR</TT>:
<P>
<PRE>
CALL SGESVX( 'E', 'N', N, 1, A, LDA, AF, LDAF, IPIV,
$ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
$ WORK, IWORK, INFO )
IF( INFO.GT.0 ) PRINT *,'(Nearly) Singular Matrix'
</PRE>
<P>
For the same <TT>A</TT> and <TT>b</TT> as above,
<!-- MATH
$\hat{x} = \left( \begin{array}{c} -.3974 \\-.3349 \\.3211 \end{array} \right)$
-->
<IMG
WIDTH="135" HEIGHT="83" ALIGN="MIDDLE" BORDER="0"
SRC="img406.png"
ALT="$\hat{x} = \left( \begin{array}{c} -.3974 \\ -.3349 \\ .3211 \end{array} \right) $">,
<!-- MATH
${\tt FERR} = 3.0 \cdot 10^{-5}$
-->
<IMG
WIDTH="135" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img407.png"
ALT="${\tt FERR} = 3.0 \cdot 10^{-5}$">,
and the actual error is
<!-- MATH
$4.3 \cdot 10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img408.png"
ALT="$4.3 \cdot 10^{-7}$">.
<P>
</DL>
<P>
This example illustrates
that the expert driver provides an error bound with less programming
effort than the simple driver, and also that it may produce a significantly
more accurate answer.
<P>
Similar code fragments, with obvious adaptations,
may be used with all the driver routines for linear
equations listed in Table <A HREF="node26.html#tabdrivelineq">2.2</A>.
For example, if a symmetric system is solved using the simple driver xSYSV,
then xLANSY must be used to compute <TT>ANORM</TT>, and xSYCON must be used
to compute <TT>RCOND</TT>.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5315"
HREF="node81.html">Further Details: Error Bounds for Linear Equation Solving</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5313"
HREF="node81.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5307"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5301"
HREF="node79.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5309"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5311"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5314"
HREF="node81.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5308"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5302"
HREF="node79.html">Improved Error Bounds</A>
  <B> <A NAME="tex2html5310"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5312"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|