File: node81.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (585 lines) | stat: -rw-r--r-- 16,515 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for Linear Equation Solving</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for Linear Equation Solving">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node80.html">
<LINK REL="up" HREF="node80.html">
<LINK REL="next" HREF="node82.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5326"
 HREF="node82.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5320"
 HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5316"
 HREF="node80.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5322"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5324"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5327"
 HREF="node82.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5321"
 HREF="node80.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5317"
 HREF="node80.html">Error Bounds for Linear</A>
 &nbsp <B>  <A NAME="tex2html5323"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5325"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03441000000000000000"></A><A NAME="secbackgroundAx_b"></A>
<BR>
Further Details:  Error Bounds for Linear Equation Solving
</H2>

<P>
The conventional error analysis of linear
equation<A NAME="10591"></A> solving goes as follows.
Let <B><I>Ax</I>=<I>b</I></B> be the system to be solved. Let <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
be the solution
computed by LAPACK (or LINPACK) using any of their linear equation solvers.
Let <B><I>r</I></B> be
the residual 
<!-- MATH
 $r = b - A \hat{x}$
 -->
<IMG
 WIDTH="88" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img409.png"
 ALT="$r = b - A \hat{x}$">.
In the absence of rounding error <B><I>r</I></B>
would be zero and <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
would equal <B><I>x</I></B>; with rounding error one can
only say the following:

<P>
<BLOCKQUOTE>
The normwise backward error of the computed solution <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">,
<A NAME="10597"></A>
<A NAME="10598"></A>
with respect to the infinity norm,
is the pair <B><I>E</I>,<I>f</I></B> which minimizes
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\max \left( \frac{\| E \|_{\infty}}{\| A \|_{\infty}} ,
            \frac{\| f \|_{\infty}}{\| b \|_{\infty}} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="159" HEIGHT="48" BORDER="0"
 SRC="img410.png"
 ALT="\begin{displaymath}
\max \left( \frac{\Vert E \Vert _{\infty}}{\Vert A \Vert _{\...
...frac{\Vert f \Vert _{\infty}}{\Vert b \Vert _{\infty}} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
subject to the constraint 
<!-- MATH
 $(A+E) \hat{x} = b+f$
 -->
<IMG
 WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img379.png"
 ALT="$(A+E)\hat{x}=b+f$">.
The minimal value of

<!-- MATH
 $\max \left( \frac{\| E \|_{\infty}}{\| A \|_{\infty}} ,
\frac{\| f \|_{\infty}}{\| b \|_{\infty}} \right)$
 -->
<IMG
 WIDTH="145" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
 SRC="img411.png"
 ALT="$\max \left( \frac{\Vert E \Vert _{\infty}}{\Vert A \Vert _{\infty}} ,
\frac{\Vert f \Vert _{\infty}}{\Vert b \Vert _{\infty}} \right)$">
is given by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\omega_{\infty}=
\frac{\| r \|_{\infty}}{\| A \|_{\infty}\cdot \| \hat{x} \|_{\infty}+ \| b \|_{\infty}} \; .
\end{displaymath}
 -->


<IMG
 WIDTH="220" HEIGHT="48" BORDER="0"
 SRC="img412.png"
 ALT="\begin{displaymath}
\omega_{\infty}=
\frac{\Vert r \Vert _{\infty}}{\Vert A \Ver...
...t \Vert \hat{x} \Vert _{\infty}+ \Vert b \Vert _{\infty}} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
One can show that the computed solution <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
satisfies 
<!-- MATH
 $\omega_{\infty}\leq p(n) \cdot \epsilon$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img413.png"
 ALT="$\omega_{\infty}\leq p(n) \cdot \epsilon$">,
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
The corresponding condition number is

<!-- MATH
 $\kappa_{\infty}(A) \equiv \|A\|_{\infty}\cdot \|A^{-1}\|_{\infty}$
 -->
<IMG
 WIDTH="199" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img414.png"
 ALT="$\kappa_{\infty}(A) \equiv \Vert A\Vert _{\infty}\cdot \Vert A^{-1}\Vert _{\infty}$">.
<A NAME="10612"></A>
The error <IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img415.png"
 ALT="$x-\hat{x}$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{\|x- \hat{x} \|_{\infty}}{\| x \|_{\infty}}
\mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}2 \cdot \omega_{\infty}\cdot \kappa_{\infty}(A) = {\tt ERRBD} \; .
\end{displaymath}
 -->


<IMG
 WIDTH="286" HEIGHT="48" BORDER="0"
 SRC="img416.png"
 ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert x \Vert _{\inf...
...dot \omega_{\infty}\cdot \kappa_{\infty}(A) = {\tt ERRBD} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
In the first code fragment in the last section, 
<!-- MATH
 $2 \cdot \omega_{\infty}$
 -->
<IMG
 WIDTH="51" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img417.png"
 ALT="$2 \cdot \omega_{\infty}$">,
which is 
<!-- MATH
 $4.504 \cdot 10^{-8}$
 -->
<IMG
 WIDTH="92" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img418.png"
 ALT="$4.504 \cdot 10^{-8}$">
in the numerical example,
is approximated by 
<!-- MATH
 $\epsilon  = 2^{-24} = 5.960 \cdot 10^{-8}$
 -->
<IMG
 WIDTH="179" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img419.png"
 ALT="$\epsilon = 2^{-24} = 5.960 \cdot 10^{-8}$">.
Approximations<A NAME="10621"></A>
of  
<!-- MATH
 $\kappa_{\infty}(A)$
 -->
<IMG
 WIDTH="55" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img388.png"
 ALT="$\kappa_{\infty}(A)$">
-- or, strictly speaking, its reciprocal <TT>RCOND</TT> --
are returned by computational routines
xyyCON (subsection&nbsp;<A HREF="node38.html#subseccomplineq">2.4.1</A>) or driver routines
xyySVX (subsection&nbsp;<A HREF="node26.html#subsecdrivelineq">2.3.1</A>). The code fragment
makes sure <TT>RCOND</TT> is at least <IMG
 WIDTH="30" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img420.png"
 ALT="$\epsilon =$">
<TT>EPSMCH</TT> to
avoid overflow in computing
<TT>ERRBD</TT>.<A NAME="10628"></A><A NAME="10629"></A>
This limits
<TT>ERRBD</TT> to a maximum of 1, which is no loss of generality since
a relative error of 1 or more indicates the same thing:
<A NAME="10631"></A><A NAME="10632"></A>
a complete loss of accuracy. <A NAME="10633"></A>
Note that the
value of <TT>RCOND</TT> returned by xyySVX may apply to a linear
system obtained from <B><I>Ax</I>=<I>b</I></B> by <EM>equilibration</EM>, i.e.
scaling the rows and columns of <B><I>A</I></B> in order to make the
condition number smaller. This is the case in the second
code fragment in the last section, where the program
chose to scale the rows by the factors returned in

<!-- MATH
 ${\tt R} = (5.882 \cdot 10^{-5}, .125, .1 )$
 -->
<IMG
 WIDTH="198" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img421.png"
 ALT="${\tt R} = (5.882 \cdot 10^{-5}, .125, .1 )$">
and scale the columns by the factors returned in

<!-- MATH
 ${\tt C} = (3.333, 1.063, 1. )$
 -->
<IMG
 WIDTH="159" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img422.png"
 ALT="${\tt C} = (3.333, 1.063, 1. )$">,
resulting in 
<!-- MATH
 ${\tt RCOND} = 3.454 \cdot 10^{-3}$
 -->
<IMG
 WIDTH="161" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img423.png"
 ALT="${\tt RCOND} = 3.454 \cdot 10^{-3}$">.

</BLOCKQUOTE>

<P>
As stated in section&nbsp;<A HREF="node79.html#seccomponentwise">4.3.2</A>,
this approach does not respect the presence
of zero or tiny entries in <B><I>A</I></B>. In contrast,
the LAPACK computational routines
xyyRFS (subsection&nbsp;<A HREF="node38.html#subseccomplineq">2.4.1</A>) or driver routines xyySVX
(subsection&nbsp;<A HREF="node26.html#subsecdrivelineq">2.3.1</A>) will (except in rare cases)
compute a solution <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
with the following properties:

<P>
<BLOCKQUOTE>
The componentwise backward error
of the computed solution <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
is the pair <B><I>E</I>,<I>f</I></B> which minimizes
<A NAME="10648"></A>
<A NAME="10649"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\max_{i,j,k} \left( \frac{| e_{ij} |}{|a_{ij}|} ,
            \frac{| f_{k} |}{|b_{k}|} \right)
\end{displaymath}
 -->


<IMG
 WIDTH="129" HEIGHT="54" BORDER="0"
 SRC="img424.png"
 ALT="\begin{displaymath}
\max_{i,j,k} \left( \frac{\vert e_{ij} \vert}{\vert a_{ij}\vert} ,
\frac{\vert f_{k} \vert}{\vert b_{k}\vert} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
(where we interpret <B>0/0</B> as 0)
subject to the constraint 
<!-- MATH
 $(A+E) \hat{x} = b+f$
 -->
<IMG
 WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img379.png"
 ALT="$(A+E)\hat{x}=b+f$">.
The minimal value of 
<!-- MATH
 $\max_{i,j,k} \left( \frac{| e_{ij} |}{|a_{ij}|} ,
\frac{| f_{k} |}{|b_{k}|} \right)$
 -->
<IMG
 WIDTH="146" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
 SRC="img425.png"
 ALT="$\max_{i,j,k} \left( \frac{\vert e_{ij} \vert}{\vert a_{ij}\vert} ,
\frac{\vert f_{k} \vert}{\vert b_{k}\vert} \right)$">
is given by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\omega_{c}= \max_i \frac{|r_i|}{ (|A| \cdot |\hat{x} | + |b|)_i} \; .
\end{displaymath}
 -->


<IMG
 WIDTH="201" HEIGHT="48" BORDER="0"
 SRC="img426.png"
 ALT="\begin{displaymath}
\omega_{c}= \max_i \frac{\vert r_i\vert}{ (\vert A\vert \cdot \vert\hat{x} \vert + \vert b\vert)_i} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
One can show that for most problems the <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
computed by xyySVX
satisfies 
<!-- MATH
 $\omega_{c}\leq p(n) \cdot \epsilon$
 -->
<IMG
 WIDTH="98" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img427.png"
 ALT="$\omega_{c}\leq p(n) \cdot \epsilon$">,
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
In other words, <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
is the exact solution of the
perturbed problem 
<!-- MATH
 $(A+ E ) \hat{x} = b + f$
 -->
<IMG
 WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img379.png"
 ALT="$(A+E)\hat{x}=b+f$">
where <B><I>E</I></B> and <B><I>f</I></B> are small relative perturbations in each entry of <B><I>A</I></B> and
<B><I>b</I></B>, respectively.
The corresponding condition number is

<!-- MATH
 $\kappa_{c}(A,b,\hat{x}) \equiv {\| \, |A^{-1}| ( |A| \cdot | \hat{x} | + |b| )
\, \|_{\infty}}/{\| \hat{x} \|_{\infty}}$
 -->
<IMG
 WIDTH="340" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img428.png"
 ALT="$\kappa_{c}(A,b,\hat{x}) \equiv {\Vert \, \vert A^{-1}\vert ( \vert A\vert \cdot...
...t{x} \vert + \vert b\vert )
\, \Vert _{\infty}}/{\Vert \hat{x} \Vert _{\infty}}$">.
<A NAME="10670"></A>
The error <IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img415.png"
 ALT="$x-\hat{x}$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{\| x- \hat{x} \|_{\infty}}{\| \hat{x} \|_{\infty}}
\leq \omega_{c}\cdot \kappa_{c}(A,b,\hat{x})  .
\end{displaymath}
 -->


<IMG
 WIDTH="208" HEIGHT="48" BORDER="0"
 SRC="img429.png"
 ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert \hat{x} \Vert _{\infty}}
\leq \omega_{c}\cdot \kappa_{c}(A,b,\hat{x}) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
<BLOCKQUOTE>The routines xyyRFS and xyySVX return
<A NAME="10675"></A>
<A NAME="10676"></A>
<IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img430.png"
 ALT="$\omega_{c}$">,
which is called <TT>BERR</TT><A NAME="10678"></A>
(for Backward ERRor),
and a bound on the the actual error

<!-- MATH
 $\|x - \hat{x}\|_{\infty}/ \| \hat{x} \|_{\infty}$
 -->
<IMG
 WIDTH="128" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img431.png"
 ALT="$\Vert x - \hat{x}\Vert _{\infty}/ \Vert \hat{x} \Vert _{\infty}$">,
called <TT>FERR</TT>
<A NAME="10682"></A>
(for Forward ERRor), as
in the second code fragment in the last section.
<TT>FERR</TT> is actually calculated by the following formula, which can
be smaller than the bound 
<!-- MATH
 $\omega_{c}\cdot \kappa_{c}(A,b,\hat{x})$
 -->
<IMG
 WIDTH="111" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img432.png"
 ALT="$\omega_{c}\cdot \kappa_{c}(A,b,\hat{x})$">
given above:
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{\| x- \hat{x} \|_{\infty}}{\| \hat{x} \|_{\infty}} \leq {\tt FERR} =
\frac{\| \, |A^{-1}| ( |\hat{r}| + n \epsilon (|A| \cdot |\hat{x}| + |b|) )
\|_{\infty}} {\| \hat{x} \|_{\infty}}  \; \; .
\end{displaymath}
 -->


<IMG
 WIDTH="428" HEIGHT="49" BORDER="0"
 SRC="img433.png"
 ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert \hat{x} \Vert ...
...rt) )
\Vert _{\infty}} {\Vert \hat{x} \Vert _{\infty}} \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
Here, <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img434.png"
 ALT="$\hat{r}$">
is the computed value of the residual <IMG
 WIDTH="56" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img435.png"
 ALT="$b-A \hat{x}$">,
and
the norm in the numerator is estimated using the same estimation
subroutine used for <TT>RCOND</TT>.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>The value of
<TT>BERR</TT> for the example in the last section is 
<!-- MATH
 $4.6 \cdot 10^{-8}$
 -->
<IMG
 WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
 SRC="img436.png"
 ALT="$4.6 \cdot 10^{-8}$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Even in the rare cases where xyyRFS fails to make
<TT>BERR</TT> close to its minimum <IMG
 WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img262.png"
 ALT="$\epsilon$">,
the error bound <TT>FERR</TT>
may remain small. See [<A
 HREF="node151.html#ariolidemmelduff">6</A>]
for details.

</BLOCKQUOTE>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5326"
 HREF="node82.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5320"
 HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5316"
 HREF="node80.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5322"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5324"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5327"
 HREF="node82.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5321"
 HREF="node80.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5317"
 HREF="node80.html">Error Bounds for Linear</A>
 &nbsp <B>  <A NAME="tex2html5323"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5325"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>