1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for Linear Equation Solving</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for Linear Equation Solving">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node80.html">
<LINK REL="up" HREF="node80.html">
<LINK REL="next" HREF="node82.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5326"
HREF="node82.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5320"
HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5316"
HREF="node80.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5322"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5324"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5327"
HREF="node82.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5321"
HREF="node80.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5317"
HREF="node80.html">Error Bounds for Linear</A>
  <B> <A NAME="tex2html5323"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5325"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03441000000000000000"></A><A NAME="secbackgroundAx_b"></A>
<BR>
Further Details: Error Bounds for Linear Equation Solving
</H2>
<P>
The conventional error analysis of linear
equation<A NAME="10591"></A> solving goes as follows.
Let <B><I>Ax</I>=<I>b</I></B> be the system to be solved. Let <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
be the solution
computed by LAPACK (or LINPACK) using any of their linear equation solvers.
Let <B><I>r</I></B> be
the residual
<!-- MATH
$r = b - A \hat{x}$
-->
<IMG
WIDTH="88" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img409.png"
ALT="$r = b - A \hat{x}$">.
In the absence of rounding error <B><I>r</I></B>
would be zero and <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
would equal <B><I>x</I></B>; with rounding error one can
only say the following:
<P>
<BLOCKQUOTE>
The normwise backward error of the computed solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">,
<A NAME="10597"></A>
<A NAME="10598"></A>
with respect to the infinity norm,
is the pair <B><I>E</I>,<I>f</I></B> which minimizes
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\max \left( \frac{\| E \|_{\infty}}{\| A \|_{\infty}} ,
\frac{\| f \|_{\infty}}{\| b \|_{\infty}} \right)
\end{displaymath}
-->
<IMG
WIDTH="159" HEIGHT="48" BORDER="0"
SRC="img410.png"
ALT="\begin{displaymath}
\max \left( \frac{\Vert E \Vert _{\infty}}{\Vert A \Vert _{\...
...frac{\Vert f \Vert _{\infty}}{\Vert b \Vert _{\infty}} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
subject to the constraint
<!-- MATH
$(A+E) \hat{x} = b+f$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img379.png"
ALT="$(A+E)\hat{x}=b+f$">.
The minimal value of
<!-- MATH
$\max \left( \frac{\| E \|_{\infty}}{\| A \|_{\infty}} ,
\frac{\| f \|_{\infty}}{\| b \|_{\infty}} \right)$
-->
<IMG
WIDTH="145" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img411.png"
ALT="$\max \left( \frac{\Vert E \Vert _{\infty}}{\Vert A \Vert _{\infty}} ,
\frac{\Vert f \Vert _{\infty}}{\Vert b \Vert _{\infty}} \right)$">
is given by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\omega_{\infty}=
\frac{\| r \|_{\infty}}{\| A \|_{\infty}\cdot \| \hat{x} \|_{\infty}+ \| b \|_{\infty}} \; .
\end{displaymath}
-->
<IMG
WIDTH="220" HEIGHT="48" BORDER="0"
SRC="img412.png"
ALT="\begin{displaymath}
\omega_{\infty}=
\frac{\Vert r \Vert _{\infty}}{\Vert A \Ver...
...t \Vert \hat{x} \Vert _{\infty}+ \Vert b \Vert _{\infty}} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
One can show that the computed solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
satisfies
<!-- MATH
$\omega_{\infty}\leq p(n) \cdot \epsilon$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img413.png"
ALT="$\omega_{\infty}\leq p(n) \cdot \epsilon$">,
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
The corresponding condition number is
<!-- MATH
$\kappa_{\infty}(A) \equiv \|A\|_{\infty}\cdot \|A^{-1}\|_{\infty}$
-->
<IMG
WIDTH="199" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img414.png"
ALT="$\kappa_{\infty}(A) \equiv \Vert A\Vert _{\infty}\cdot \Vert A^{-1}\Vert _{\infty}$">.
<A NAME="10612"></A>
The error <IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img415.png"
ALT="$x-\hat{x}$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\|x- \hat{x} \|_{\infty}}{\| x \|_{\infty}}
\mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}2 \cdot \omega_{\infty}\cdot \kappa_{\infty}(A) = {\tt ERRBD} \; .
\end{displaymath}
-->
<IMG
WIDTH="286" HEIGHT="48" BORDER="0"
SRC="img416.png"
ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert x \Vert _{\inf...
...dot \omega_{\infty}\cdot \kappa_{\infty}(A) = {\tt ERRBD} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
In the first code fragment in the last section,
<!-- MATH
$2 \cdot \omega_{\infty}$
-->
<IMG
WIDTH="51" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img417.png"
ALT="$2 \cdot \omega_{\infty}$">,
which is
<!-- MATH
$4.504 \cdot 10^{-8}$
-->
<IMG
WIDTH="92" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img418.png"
ALT="$4.504 \cdot 10^{-8}$">
in the numerical example,
is approximated by
<!-- MATH
$\epsilon = 2^{-24} = 5.960 \cdot 10^{-8}$
-->
<IMG
WIDTH="179" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img419.png"
ALT="$\epsilon = 2^{-24} = 5.960 \cdot 10^{-8}$">.
Approximations<A NAME="10621"></A>
of
<!-- MATH
$\kappa_{\infty}(A)$
-->
<IMG
WIDTH="55" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img388.png"
ALT="$\kappa_{\infty}(A)$">
-- or, strictly speaking, its reciprocal <TT>RCOND</TT> --
are returned by computational routines
xyyCON (subsection <A HREF="node38.html#subseccomplineq">2.4.1</A>) or driver routines
xyySVX (subsection <A HREF="node26.html#subsecdrivelineq">2.3.1</A>). The code fragment
makes sure <TT>RCOND</TT> is at least <IMG
WIDTH="30" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img420.png"
ALT="$\epsilon =$">
<TT>EPSMCH</TT> to
avoid overflow in computing
<TT>ERRBD</TT>.<A NAME="10628"></A><A NAME="10629"></A>
This limits
<TT>ERRBD</TT> to a maximum of 1, which is no loss of generality since
a relative error of 1 or more indicates the same thing:
<A NAME="10631"></A><A NAME="10632"></A>
a complete loss of accuracy. <A NAME="10633"></A>
Note that the
value of <TT>RCOND</TT> returned by xyySVX may apply to a linear
system obtained from <B><I>Ax</I>=<I>b</I></B> by <EM>equilibration</EM>, i.e.
scaling the rows and columns of <B><I>A</I></B> in order to make the
condition number smaller. This is the case in the second
code fragment in the last section, where the program
chose to scale the rows by the factors returned in
<!-- MATH
${\tt R} = (5.882 \cdot 10^{-5}, .125, .1 )$
-->
<IMG
WIDTH="198" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img421.png"
ALT="${\tt R} = (5.882 \cdot 10^{-5}, .125, .1 )$">
and scale the columns by the factors returned in
<!-- MATH
${\tt C} = (3.333, 1.063, 1. )$
-->
<IMG
WIDTH="159" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img422.png"
ALT="${\tt C} = (3.333, 1.063, 1. )$">,
resulting in
<!-- MATH
${\tt RCOND} = 3.454 \cdot 10^{-3}$
-->
<IMG
WIDTH="161" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img423.png"
ALT="${\tt RCOND} = 3.454 \cdot 10^{-3}$">.
</BLOCKQUOTE>
<P>
As stated in section <A HREF="node79.html#seccomponentwise">4.3.2</A>,
this approach does not respect the presence
of zero or tiny entries in <B><I>A</I></B>. In contrast,
the LAPACK computational routines
xyyRFS (subsection <A HREF="node38.html#subseccomplineq">2.4.1</A>) or driver routines xyySVX
(subsection <A HREF="node26.html#subsecdrivelineq">2.3.1</A>) will (except in rare cases)
compute a solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
with the following properties:
<P>
<BLOCKQUOTE>
The componentwise backward error
of the computed solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is the pair <B><I>E</I>,<I>f</I></B> which minimizes
<A NAME="10648"></A>
<A NAME="10649"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\max_{i,j,k} \left( \frac{| e_{ij} |}{|a_{ij}|} ,
\frac{| f_{k} |}{|b_{k}|} \right)
\end{displaymath}
-->
<IMG
WIDTH="129" HEIGHT="54" BORDER="0"
SRC="img424.png"
ALT="\begin{displaymath}
\max_{i,j,k} \left( \frac{\vert e_{ij} \vert}{\vert a_{ij}\vert} ,
\frac{\vert f_{k} \vert}{\vert b_{k}\vert} \right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
(where we interpret <B>0/0</B> as 0)
subject to the constraint
<!-- MATH
$(A+E) \hat{x} = b+f$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img379.png"
ALT="$(A+E)\hat{x}=b+f$">.
The minimal value of
<!-- MATH
$\max_{i,j,k} \left( \frac{| e_{ij} |}{|a_{ij}|} ,
\frac{| f_{k} |}{|b_{k}|} \right)$
-->
<IMG
WIDTH="146" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img425.png"
ALT="$\max_{i,j,k} \left( \frac{\vert e_{ij} \vert}{\vert a_{ij}\vert} ,
\frac{\vert f_{k} \vert}{\vert b_{k}\vert} \right)$">
is given by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\omega_{c}= \max_i \frac{|r_i|}{ (|A| \cdot |\hat{x} | + |b|)_i} \; .
\end{displaymath}
-->
<IMG
WIDTH="201" HEIGHT="48" BORDER="0"
SRC="img426.png"
ALT="\begin{displaymath}
\omega_{c}= \max_i \frac{\vert r_i\vert}{ (\vert A\vert \cdot \vert\hat{x} \vert + \vert b\vert)_i} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
One can show that for most problems the <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
computed by xyySVX
satisfies
<!-- MATH
$\omega_{c}\leq p(n) \cdot \epsilon$
-->
<IMG
WIDTH="98" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img427.png"
ALT="$\omega_{c}\leq p(n) \cdot \epsilon$">,
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
In other words, <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is the exact solution of the
perturbed problem
<!-- MATH
$(A+ E ) \hat{x} = b + f$
-->
<IMG
WIDTH="139" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img379.png"
ALT="$(A+E)\hat{x}=b+f$">
where <B><I>E</I></B> and <B><I>f</I></B> are small relative perturbations in each entry of <B><I>A</I></B> and
<B><I>b</I></B>, respectively.
The corresponding condition number is
<!-- MATH
$\kappa_{c}(A,b,\hat{x}) \equiv {\| \, |A^{-1}| ( |A| \cdot | \hat{x} | + |b| )
\, \|_{\infty}}/{\| \hat{x} \|_{\infty}}$
-->
<IMG
WIDTH="340" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img428.png"
ALT="$\kappa_{c}(A,b,\hat{x}) \equiv {\Vert \, \vert A^{-1}\vert ( \vert A\vert \cdot...
...t{x} \vert + \vert b\vert )
\, \Vert _{\infty}}/{\Vert \hat{x} \Vert _{\infty}}$">.
<A NAME="10670"></A>
The error <IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img415.png"
ALT="$x-\hat{x}$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\| x- \hat{x} \|_{\infty}}{\| \hat{x} \|_{\infty}}
\leq \omega_{c}\cdot \kappa_{c}(A,b,\hat{x}) .
\end{displaymath}
-->
<IMG
WIDTH="208" HEIGHT="48" BORDER="0"
SRC="img429.png"
ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert \hat{x} \Vert _{\infty}}
\leq \omega_{c}\cdot \kappa_{c}(A,b,\hat{x}) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
<BLOCKQUOTE>The routines xyyRFS and xyySVX return
<A NAME="10675"></A>
<A NAME="10676"></A>
<IMG
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img430.png"
ALT="$\omega_{c}$">,
which is called <TT>BERR</TT><A NAME="10678"></A>
(for Backward ERRor),
and a bound on the the actual error
<!-- MATH
$\|x - \hat{x}\|_{\infty}/ \| \hat{x} \|_{\infty}$
-->
<IMG
WIDTH="128" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img431.png"
ALT="$\Vert x - \hat{x}\Vert _{\infty}/ \Vert \hat{x} \Vert _{\infty}$">,
called <TT>FERR</TT>
<A NAME="10682"></A>
(for Forward ERRor), as
in the second code fragment in the last section.
<TT>FERR</TT> is actually calculated by the following formula, which can
be smaller than the bound
<!-- MATH
$\omega_{c}\cdot \kappa_{c}(A,b,\hat{x})$
-->
<IMG
WIDTH="111" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img432.png"
ALT="$\omega_{c}\cdot \kappa_{c}(A,b,\hat{x})$">
given above:
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\| x- \hat{x} \|_{\infty}}{\| \hat{x} \|_{\infty}} \leq {\tt FERR} =
\frac{\| \, |A^{-1}| ( |\hat{r}| + n \epsilon (|A| \cdot |\hat{x}| + |b|) )
\|_{\infty}} {\| \hat{x} \|_{\infty}} \; \; .
\end{displaymath}
-->
<IMG
WIDTH="428" HEIGHT="49" BORDER="0"
SRC="img433.png"
ALT="\begin{displaymath}
\frac{\Vert x- \hat{x} \Vert _{\infty}}{\Vert \hat{x} \Vert ...
...rt) )
\Vert _{\infty}} {\Vert \hat{x} \Vert _{\infty}} \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
Here, <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img434.png"
ALT="$\hat{r}$">
is the computed value of the residual <IMG
WIDTH="56" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img435.png"
ALT="$b-A \hat{x}$">,
and
the norm in the numerator is estimated using the same estimation
subroutine used for <TT>RCOND</TT>.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>The value of
<TT>BERR</TT> for the example in the last section is
<!-- MATH
$4.6 \cdot 10^{-8}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img436.png"
ALT="$4.6 \cdot 10^{-8}$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Even in the rare cases where xyyRFS fails to make
<TT>BERR</TT> close to its minimum <IMG
WIDTH="12" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img262.png"
ALT="$\epsilon$">,
the error bound <TT>FERR</TT>
may remain small. See [<A
HREF="node151.html#ariolidemmelduff">6</A>]
for details.
</BLOCKQUOTE>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5326"
HREF="node82.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5320"
HREF="node80.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5316"
HREF="node80.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5322"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5324"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5327"
HREF="node82.html">Error Bounds for Linear</A>
<B> Up:</B> <A NAME="tex2html5321"
HREF="node80.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5317"
HREF="node80.html">Error Bounds for Linear</A>
  <B> <A NAME="tex2html5323"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5325"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|