1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Error Bounds for Linear Least Squares Problems</TITLE>
<META NAME="description" CONTENT="Error Bounds for Linear Least Squares Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node84.html">
<LINK REL="previous" HREF="node80.html">
<LINK REL="up" HREF="node72.html">
<LINK REL="next" HREF="node83.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5340"
HREF="node83.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5334"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5328"
HREF="node81.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5336"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5338"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5341"
HREF="node83.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5335"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5329"
HREF="node81.html">Further Details: Error Bounds</A>
  <B> <A NAME="tex2html5337"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5339"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03450000000000000000"></A><A NAME="seclsq"></A>
<BR>
Error Bounds for Linear Least Squares Problems
</H1>
<P>
<P>
The linear least squares problem is to find <B><I>x</I></B> that minimizes
<IMG
WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img437.png"
ALT="$\Vert Ax-b \Vert _2$">.
We discuss error bounds for the most common case where <B><I>A</I></B> is <B><I>m</I></B>-by-<B><I>n</I></B>
with <B><I>m</I> > <I>n</I></B>, and <B><I>A</I></B> has full rank<A NAME="10758"></A>;
this is called an <EM>overdetermined least squares problem</EM>
<A NAME="10760"></A>
(the following code fragments deal with <B><I>m</I>=<I>n</I></B> as well).
<P>
Let <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
be the solution computed by one of the driver routines
xGELS, xGELSX, xGELSY, xGELSS, or xGELSD (see section <A HREF="node27.html#subsecdrivellsq">2.3.2</A>).
An approximate error
bound<A NAME="footfnm 0"><SUP>4.10</SUP></A><A NAME="10764"></A><A NAME="10765"></A><A NAME="10766"></A><A NAME="10767"></A>
<A NAME="10768"></A><A NAME="10769"></A><A NAME="10770"></A><A NAME="10771"></A>
<A NAME="10772"></A><A NAME="10773"></A><A NAME="10774"></A><A NAME="10775"></A>
<A NAME="10776"></A><A NAME="10777"></A><A NAME="10778"></A><A NAME="10779"></A>
<A NAME="10780"></A><A NAME="10781"></A><A NAME="10782"></A><A NAME="10783"></A>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\| \hat{x} - x \|_2}{\| x \|_2} \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}{\tt ERRBD}
\end{displaymath}
-->
<IMG
WIDTH="137" HEIGHT="48" BORDER="0"
SRC="img438.png"
ALT="\begin{displaymath}
\frac{\Vert \hat{x} - x \Vert _2}{\Vert x \Vert _2} \mathrel...
...box{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}{\tt ERRBD}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
may be computed in one of the following ways, depending on which type
of driver routine is used:
<P>
<DL COMPACT>
<DT>1.
<DD>Suppose the simple driver SGELS is used:
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Get the 2-norm of the right hand side B
BNORM = SNRM2( M, B, 1 )
* Solve the least squares problem; the solution X overwrites B
CALL SGELS( 'N', M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
IF ( MIN(M,N) .GT. 0 ) THEN
* Get the 2-norm of the residual A*X-B
RNORM = SNRM2( M-N, B( N+1 ), 1 )
* Get the reciprocal condition number RCOND of A
CALL STRCON('I', 'U', 'N', N, A, LDA, RCOND, WORK, IWORK, INFO)
RCOND = MAX( RCOND, EPSMCH )
IF ( BNORM .GT. 0.0 ) THEN
SINT = RNORM / BNORM
ELSE
SINT = 0.0
ENDIF
COST = MAX( SQRT( (1.0E0 - SINT)*(1.0E0 + SINT) ), EPSMCH )
TANT = SINT / COST
ERRBD = EPSMCH*( 2.0E0/(RCOND*COST) + TANT / RCOND**2 )
ENDIF
</PRE>
<A NAME="10790"></A>
<P>
For example<A NAME="footfnm 0"><SUP>4.11</SUP></A>,
if
<!-- MATH
${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
-->
<IMG
WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img397.png"
ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{array}{ccc} 4 & 3 & 5 \\2 & 5 & 8 \\3 & 6 & 10 \\4 & 5 & 11 \end{array} \right)
\; {\rm and} \;
b = \left( \begin{array}{c} 100.1 \\.1 \\.01 \\.01 \end{array} \right) \; ,
\end{displaymath}
-->
<IMG
WIDTH="313" HEIGHT="93" BORDER="0"
SRC="img439.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{ccc} 4 & 3 & 5 \\ 2 & 5 & 8 \\ 3 & ...
...n{array}{c} 100.1 \\ .1 \\ .01 \\ .01 \end{array} \right) \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then, to 4 decimal places,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
x = \hat{x} = \left( \begin{array}{c} 38.49 \\21.59 \\-23.88 \end{array} \right) \; \; ,
\end{displaymath}
-->
<IMG
WIDTH="180" HEIGHT="73" BORDER="0"
SRC="img440.png"
ALT="\begin{displaymath}
x = \hat{x} = \left( \begin{array}{c} 38.49 \\ 21.59 \\ -23.88 \end{array} \right) \; \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<!-- MATH
${\tt BNORM} = 100.1$
-->
<IMG
WIDTH="113" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img441.png"
ALT="${\tt BNORM} = 100.1$">,
<!-- MATH
${\tt RNORM} = 8.843$
-->
<IMG
WIDTH="113" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img442.png"
ALT="${\tt RNORM} = 8.843$">,
<!-- MATH
${\tt RCOND} = 4.712 \cdot 10^{-2}$
-->
<IMG
WIDTH="161" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img443.png"
ALT="${\tt RCOND} = 4.712 \cdot 10^{-2}$">,
<!-- MATH
${\tt ERRBD} = 4.9 \cdot 10^{-6}$
-->
<IMG
WIDTH="144" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img444.png"
ALT="${\tt ERRBD} = 4.9 \cdot 10^{-6}$">,
and the true error
is
<!-- MATH
$4.6 \cdot 10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img445.png"
ALT="$4.6 \cdot 10^{-7}$">.
<P>
<DT>2.
<DD>Suppose the expert driver SGELSX or SGELSY is used.
<A NAME="10807"></A>
<A NAME="10808"></A>
This routine has an input argument <TT>RCND</TT>,
which is used to determine the rank of the input matrix (briefly,
<A NAME="10810"></A>
the matrix is considered not to have full rank if its condition
number exceeds <TT>1/RCND</TT>).
<A NAME="10812"></A>
The code fragment below only computes error bounds
if the matrix has been determined to have full rank.
When the matrix does not have full rank,
computing and interpreting error bounds is more complicated, and
the reader is referred to the next section.
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Get the 2-norm of the right hand side B
BNORM = SNRM2( M, B, 1 )
* Solve the least squares problem; the solution X overwrites B
RCND = 0
CALL SGELSX( M, N, 1, A, LDA, B, LDB, JPVT, RCND, RANK, WORK,
$ INFO )
IF ( RANK.LT.N ) THEN
PRINT *,'Matrix less than full rank'
ELSE IF ( MIN( M,N ) .GT. 0 ) THEN
* Get the 2-norm of the residual A*X-B
RNORM = SNRM2( M-N, B( N+1 ), 1 )
* Get the reciprocal condition number RCOND of A
CALL STRCON('I', 'U', 'N', N, A, LDA, RCOND, WORK, IWORK, INFO)
RCOND = MAX( RCOND, EPSMCH )
IF ( BNORM .GT. 0.0 ) THEN
SINT = RNORM / BNORM
ELSE
SINT = 0.0
ENDIF
COST = MAX( SQRT( (1.0E0 - SINT)*(1.0E0 + SINT) ), EPSMCH )
TANT = SINT / COST
ERRBD = EPSMCH*( 2.0E0/(RCOND*COST) + TANT / RCOND**2 )
END IF
</PRE>
The numerical results of this code fragment on the above <B><I>A</I></B> and <B><I>b</I></B> are
the same as for the first code fragment.
<P>
<DT>3.
<DD>Suppose the other type of expert driver SGELSS or SGELSD is
used<A NAME="10815"></A><A NAME="10816"></A>.
This routine also has an input argument <TT>RCND</TT>, which is used to
determine the rank of the matrix <B><I>A</I></B>. The same code fragment can be used
to compute error bounds as for SGELSX or SGELSY,
except that the call to SGELSX must
be replaced by:
<P>
<PRE>
CALL SGELSD( M, N, 1, A, LDA, B, LDB, S, RCND, RANK, WORK, LWORK,
$ IWORK, INFO )
</PRE>
<P>
and the call to STRCON must be replaced by:
<P>
<PRE>
RCOND = S( N ) / S( 1 )
</PRE>
<A NAME="10822"></A>
<P>
Applied to the same <B><I>A</I></B> and <B><I>b</I></B> as above, the computed <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
is
nearly the same,
<!-- MATH
${\tt RCOND} = 5.428 \cdot 10^{-2}$
-->
<IMG
WIDTH="161" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img446.png"
ALT="${\tt RCOND} = 5.428 \cdot 10^{-2}$">,
<!-- MATH
${\tt ERRBD} = 4.0 \cdot 10^{-6}$
-->
<IMG
WIDTH="144" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img447.png"
ALT="${\tt ERRBD} = 4.0 \cdot 10^{-6}$">,
and the true error is
<!-- MATH
$6.6 \cdot 10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img448.png"
ALT="$6.6 \cdot 10^{-7}$">.
<P>
</DL>
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5342"
HREF="node83.html">Further Details: Error Bounds for Linear Least Squares
Problems</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5340"
HREF="node83.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5334"
HREF="node72.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5328"
HREF="node81.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5336"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5338"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5341"
HREF="node83.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5335"
HREF="node72.html">Accuracy and Stability</A>
<B> Previous:</B> <A NAME="tex2html5329"
HREF="node81.html">Further Details: Error Bounds</A>
  <B> <A NAME="tex2html5337"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5339"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|