1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for Linear Least Squares
Problems</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for Linear Least Squares
Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node82.html">
<LINK REL="up" HREF="node82.html">
<LINK REL="next" HREF="node84.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5353"
HREF="node84.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5347"
HREF="node82.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5343"
HREF="node82.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5349"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5351"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5354"
HREF="node84.html">Error Bounds for Generalized</A>
<B> Up:</B> <A NAME="tex2html5348"
HREF="node82.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5344"
HREF="node82.html">Error Bounds for Linear</A>
  <B> <A NAME="tex2html5350"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5352"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03451000000000000000"></A><A NAME="secbackgroundlsq"></A>
<BR>
Further Details: Error Bounds for Linear Least Squares
Problems
</H2>
<P>
The conventional error analysis of linear least squares problems goes
as follows<A NAME="10832"></A>.
As above, let <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
be the solution to minimizing
<IMG
WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img437.png"
ALT="$\Vert Ax-b \Vert _2$">
computed by
LAPACK using one of the least squares drivers
xGELS, xGELSX, xGELSY, xGELSS or xGELSD
(see subsection <A HREF="node27.html#subsecdrivellsq">2.3.2</A>).
We discuss the most common case, where <B><I>A</I></B> is
overdetermined<A NAME="10834"></A>
(i.e., has more rows than columns) and has full rank
[<A
HREF="node151.html#bjorck3">16</A>,<A
HREF="node151.html#demmelMA221">25</A>,<A
HREF="node151.html#GVL2">55</A>,<A
HREF="node151.html#higham96">67</A>]:
<A NAME="10836"></A><A NAME="10837"></A><A NAME="10838"></A><A NAME="10839"></A>
<A NAME="10840"></A><A NAME="10841"></A><A NAME="10842"></A><A NAME="10843"></A>
<A NAME="10844"></A><A NAME="10845"></A><A NAME="10846"></A><A NAME="10847"></A>
<A NAME="10848"></A><A NAME="10849"></A><A NAME="10850"></A><A NAME="10851"></A>
<A NAME="10852"></A><A NAME="10853"></A><A NAME="10854"></A><A NAME="10855"></A>
<P>
<BLOCKQUOTE>
The computed solution <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
has a small normwise backward error.
In other words <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img295.png"
ALT="$\hat{x}$">
minimizes
<!-- MATH
$\|(A+E) \hat{x}- (b+f)\|_2$
-->
<IMG
WIDTH="175" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img449.png"
ALT="$\Vert(A+E) \hat{x}- (b+f)\Vert _2$">,
where
<B><I>E</I></B> and <B><I>f</I></B> satisfy
<A NAME="10857"></A>
<A NAME="10858"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\max \left( \frac{\| E \|_2}{\| A \|_2} ,
\frac{\| f \|_2}{\| b \|_2} \right) \leq p(n) \epsilon
\end{displaymath}
-->
<IMG
WIDTH="211" HEIGHT="48" BORDER="0"
SRC="img450.png"
ALT="\begin{displaymath}
\max \left( \frac{\Vert E \Vert _2}{\Vert A \Vert _2} ,
\frac{\Vert f \Vert _2}{\Vert b \Vert _2} \right) \leq p(n) \epsilon
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
and <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>. We take <B><I>p</I>(<I>n</I>)=1</B> in
the code fragments above.
Let
<!-- MATH
$\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$
-->
<IMG
WIDTH="203" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img451.png"
ALT="$\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$">
(approximated by
1/<TT>RCOND</TT> in the above code fragments),
<!-- MATH
$\rho = \|A \hat{x} -b\|_2$
-->
<IMG
WIDTH="113" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img452.png"
ALT="$\rho = \Vert A \hat{x} -b\Vert _2$">
(= <TT>RNORM</TT> above), and
<!-- MATH
$\sin ( \theta ) = \rho / \|b\|_2$
-->
<IMG
WIDTH="122" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img453.png"
ALT="$\sin ( \theta ) = \rho / \Vert b\Vert _2$">
(<TT>SINT = RNORM / BNORM</TT> above). Here, <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img328.png"
ALT="$\theta$">
is the acute angle between
the vectors <IMG
WIDTH="27" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img454.png"
ALT="$A \hat{x}$">
and <B><I>b</I></B>.
<A NAME="10870"></A>
<A NAME="10871"></A>
Then when <IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img455.png"
ALT="$p(n) \epsilon$">
is small, the error <IMG
WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img456.png"
ALT="$\hat{x}- x$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\frac{\|x-\hat{x}\|_2}{\|x\|_2} \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}p(n) \epsilon
\left\{ \frac{2 \kappa_2 (A)}{\cos ( \theta )} + \tan ( \theta ) \kappa_2^2 (A)
\right\},
\end{displaymath}
-->
<IMG
WIDTH="334" HEIGHT="48" BORDER="0"
SRC="img457.png"
ALT="\begin{displaymath}
\frac{\Vert x-\hat{x}\Vert _2}{\Vert x\Vert _2} \mathrel{\ra...
...)}{\cos ( \theta )} + \tan ( \theta ) \kappa_2^2 (A)
\right\},
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where
<!-- MATH
$\cos ( \theta )$
-->
<IMG
WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img458.png"
ALT="$\cos ( \theta ) $">
= <TT>COST</TT> and
<!-- MATH
$\tan ( \theta )$
-->
<IMG
WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img459.png"
ALT="$\tan ( \theta )$">
= <TT>TANT</TT> in the code fragments
above.
</BLOCKQUOTE>
<P>
We avoid overflow by making sure <TT>RCOND</TT> and <TT>COST</TT> are both at least
<IMG
WIDTH="30" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img420.png"
ALT="$\epsilon =$">
<TT>EPSMCH</TT>, and by handling the case of a zero <TT>B</TT> matrix
separately (<TT>BNORM = 0</TT>).
<A NAME="10884"></A>
<A NAME="10885"></A>
<P>
<!-- MATH
$\kappa_2 (A) = \sigma_{\max} (A) / \sigma_{\min} (A)$
-->
<IMG
WIDTH="203" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img451.png"
ALT="$\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$">
may be computed directly
from the singular values of <B><I>A</I></B> returned by xGELSS or xGELSD (as in the code fragment)
or by xGESVD or xGESDD. It may also be approximated by using xTRCON following calls to
xGELS, xGELSX or xGELSY. xTRCON estimates
<!-- MATH
$\kappa_{\infty}$
-->
<IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img460.png"
ALT="$\kappa_{\infty}$">
or <IMG
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img461.png"
ALT="$\kappa_1$">
instead
of <IMG
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img462.png"
ALT="$\kappa_2$">,
but these can differ from <IMG
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img462.png"
ALT="$\kappa_2$">
by at most a factor of <B><I>n</I></B>.
<A NAME="10889"></A><A NAME="10890"></A><A NAME="10891"></A><A NAME="10892"></A>
<A NAME="10893"></A><A NAME="10894"></A><A NAME="10895"></A><A NAME="10896"></A>
<A NAME="10897"></A><A NAME="10898"></A><A NAME="10899"></A><A NAME="10900"></A>
<P>
If <B><I>A</I></B> is rank-deficient, xGELSS, xGELSD, xGELSY and xGELSX can be used to
<B>regularize</B> the
problem<A NAME="10902"></A><A NAME="10903"></A>
by treating all singular values
less than a user-specified threshold
(
<!-- MATH
${\tt RCND} \cdot \sigma_{\max} (A)$
-->
<IMG
WIDTH="116" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img463.png"
ALT="${\tt RCND} \cdot \sigma_{\max} (A)$">)
as
exactly zero. The number of singular values treated as nonzero is returned
in <TT>RANK</TT>. See [<A
HREF="node151.html#bjorck3">16</A>,<A
HREF="node151.html#GVL2">55</A>,<A
HREF="node151.html#higham96">67</A>]
for error bounds in this case, as well as
<A NAME="10908"></A>
[<A
HREF="node151.html#demmelhigham1">28</A>] for the
underdetermined<A NAME="10910"></A>
<A NAME="10911"></A> case.
The ability to deal with rank-deficient matrices is the principal attraction
of these four drivers, which are more expensive than the simple driver xGELS.
<P>
The solution of the overdetermined,
<A NAME="10912"></A>
<A NAME="10913"></A>
full-rank problem may also be
characterized as the solution of the linear system of equations
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left( \begin{array}{cc} I & A \\A^T & 0 \end{array} \right) \left( \begin{array}{c} r \\x \end{array} \right) =
\left( \begin{array}{c} b \\0 \end{array} \right) .
\end{displaymath}
-->
<IMG
WIDTH="225" HEIGHT="54" BORDER="0"
SRC="img464.png"
ALT="\begin{displaymath}
\left( \begin{array}{cc} I & A \\ A^T & 0 \end{array} \right...
...\right) =
\left( \begin{array}{c} b \\ 0 \end{array} \right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
By solving this linear system using xyyRFS or xyySVX (see section
<A HREF="node80.html#secAx_b">4.4</A>) componentwise error bounds can also be obtained
[<A
HREF="node151.html#arioliduffderijk">7</A>].
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5353"
HREF="node84.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5347"
HREF="node82.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5343"
HREF="node82.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5349"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5351"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5354"
HREF="node84.html">Error Bounds for Generalized</A>
<B> Up:</B> <A NAME="tex2html5348"
HREF="node82.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5344"
HREF="node82.html">Error Bounds for Linear</A>
  <B> <A NAME="tex2html5350"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5352"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|