File: node83.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (385 lines) | stat: -rw-r--r-- 11,441 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for Linear Least Squares
Problems</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for Linear Least Squares
Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node82.html">
<LINK REL="up" HREF="node82.html">
<LINK REL="next" HREF="node84.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5353"
 HREF="node84.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5347"
 HREF="node82.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5343"
 HREF="node82.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5349"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5351"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5354"
 HREF="node84.html">Error Bounds for Generalized</A>
<B> Up:</B> <A NAME="tex2html5348"
 HREF="node82.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5344"
 HREF="node82.html">Error Bounds for Linear</A>
 &nbsp <B>  <A NAME="tex2html5350"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5352"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03451000000000000000"></A><A NAME="secbackgroundlsq"></A>
<BR>
Further Details:  Error Bounds for Linear Least Squares
Problems
</H2>

<P>
The conventional error analysis of linear least squares problems goes
as follows<A NAME="10832"></A>.
As above, let <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
be the solution to minimizing
<IMG
 WIDTH="81" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img437.png"
 ALT="$\Vert Ax-b \Vert _2$">
computed by
LAPACK using one of the least squares drivers
xGELS, xGELSX, xGELSY, xGELSS or xGELSD
(see subsection <A HREF="node27.html#subsecdrivellsq">2.3.2</A>).
We discuss the most common case, where <B><I>A</I></B> is
overdetermined<A NAME="10834"></A>
(i.e., has more rows than columns) and has full rank
[<A
 HREF="node151.html#bjorck3">16</A>,<A
 HREF="node151.html#demmelMA221">25</A>,<A
 HREF="node151.html#GVL2">55</A>,<A
 HREF="node151.html#higham96">67</A>]:
<A NAME="10836"></A><A NAME="10837"></A><A NAME="10838"></A><A NAME="10839"></A>
<A NAME="10840"></A><A NAME="10841"></A><A NAME="10842"></A><A NAME="10843"></A>
<A NAME="10844"></A><A NAME="10845"></A><A NAME="10846"></A><A NAME="10847"></A>
<A NAME="10848"></A><A NAME="10849"></A><A NAME="10850"></A><A NAME="10851"></A>
<A NAME="10852"></A><A NAME="10853"></A><A NAME="10854"></A><A NAME="10855"></A>

<P>
<BLOCKQUOTE>
The computed solution <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
has a small normwise backward error.
In other words <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img295.png"
 ALT="$\hat{x}$">
minimizes 
<!-- MATH
 $\|(A+E) \hat{x}- (b+f)\|_2$
 -->
<IMG
 WIDTH="175" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img449.png"
 ALT="$\Vert(A+E) \hat{x}- (b+f)\Vert _2$">,
where
<B><I>E</I></B> and <B><I>f</I></B> satisfy
<A NAME="10857"></A>
<A NAME="10858"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\max \left( \frac{\| E \|_2}{\| A \|_2} ,
            \frac{\| f \|_2}{\| b \|_2} \right) \leq p(n) \epsilon
\end{displaymath}
 -->


<IMG
 WIDTH="211" HEIGHT="48" BORDER="0"
 SRC="img450.png"
 ALT="\begin{displaymath}
\max \left( \frac{\Vert E \Vert _2}{\Vert A \Vert _2} ,
\frac{\Vert f \Vert _2}{\Vert b \Vert _2} \right) \leq p(n) \epsilon
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
and <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>. We take <B><I>p</I>(<I>n</I>)=1</B> in
the code fragments above.
Let 
<!-- MATH
 $\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$
 -->
<IMG
 WIDTH="203" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img451.png"
 ALT="$\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$">
(approximated by
1/<TT>RCOND</TT> in the above code fragments),

<!-- MATH
 $\rho = \|A \hat{x} -b\|_2$
 -->
<IMG
 WIDTH="113" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img452.png"
 ALT="$\rho = \Vert A \hat{x} -b\Vert _2$">
(= <TT>RNORM</TT> above), and 
<!-- MATH
 $\sin ( \theta ) = \rho / \|b\|_2$
 -->
<IMG
 WIDTH="122" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img453.png"
 ALT="$\sin ( \theta ) = \rho / \Vert b\Vert _2$">
(<TT>SINT = RNORM / BNORM</TT> above). Here, <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img328.png"
 ALT="$\theta$">
is the acute angle between
the vectors <IMG
 WIDTH="27" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img454.png"
 ALT="$A \hat{x}$">
and <B><I>b</I></B>.
<A NAME="10870"></A>
<A NAME="10871"></A>
Then when <IMG
 WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img455.png"
 ALT="$p(n) \epsilon$">
is small, the error <IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img456.png"
 ALT="$\hat{x}- x$">
is bounded by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{\|x-\hat{x}\|_2}{\|x\|_2} \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}p(n) \epsilon
\left\{ \frac{2 \kappa_2 (A)}{\cos ( \theta )} + \tan ( \theta ) \kappa_2^2 (A)
\right\},
\end{displaymath}
 -->


<IMG
 WIDTH="334" HEIGHT="48" BORDER="0"
 SRC="img457.png"
 ALT="\begin{displaymath}
\frac{\Vert x-\hat{x}\Vert _2}{\Vert x\Vert _2} \mathrel{\ra...
...)}{\cos ( \theta )} + \tan ( \theta ) \kappa_2^2 (A)
\right\},
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where 
<!-- MATH
 $\cos ( \theta )$
 -->
<IMG
 WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img458.png"
 ALT="$\cos ( \theta ) $">
= <TT>COST</TT> and 
<!-- MATH
 $\tan ( \theta )$
 -->
<IMG
 WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img459.png"
 ALT="$\tan ( \theta )$">
= <TT>TANT</TT> in the code fragments
above.

</BLOCKQUOTE>

<P>
We avoid overflow by making sure <TT>RCOND</TT> and <TT>COST</TT> are both at least
<IMG
 WIDTH="30" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img420.png"
 ALT="$\epsilon =$">
<TT>EPSMCH</TT>, and by handling the case of a zero <TT>B</TT> matrix
separately (<TT>BNORM = 0</TT>).
<A NAME="10884"></A>
<A NAME="10885"></A>

<P>

<!-- MATH
 $\kappa_2 (A) = \sigma_{\max} (A) / \sigma_{\min} (A)$
 -->
<IMG
 WIDTH="203" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img451.png"
 ALT="$\kappa_2 (A) = \sigma_{\max} (A)/\sigma_{\min} (A)$">
may be computed directly
from the singular values of <B><I>A</I></B> returned by xGELSS or xGELSD (as in the code fragment)
or by xGESVD or xGESDD. It may also be approximated by using xTRCON following calls to
xGELS, xGELSX or xGELSY.  xTRCON estimates 
<!-- MATH
 $\kappa_{\infty}$
 -->
<IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img460.png"
 ALT="$\kappa_{\infty}$">
or <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img461.png"
 ALT="$\kappa_1$">
instead
of <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img462.png"
 ALT="$\kappa_2$">,
but these can differ from <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img462.png"
 ALT="$\kappa_2$">
by at most a factor of <B><I>n</I></B>.
<A NAME="10889"></A><A NAME="10890"></A><A NAME="10891"></A><A NAME="10892"></A>
<A NAME="10893"></A><A NAME="10894"></A><A NAME="10895"></A><A NAME="10896"></A>
<A NAME="10897"></A><A NAME="10898"></A><A NAME="10899"></A><A NAME="10900"></A>

<P>
If <B><I>A</I></B> is rank-deficient, xGELSS, xGELSD, xGELSY and xGELSX can be used to
<B>regularize</B> the
problem<A NAME="10902"></A><A NAME="10903"></A>
by treating all singular values
less than a user-specified threshold
(
<!-- MATH
 ${\tt RCND} \cdot \sigma_{\max} (A)$
 -->
<IMG
 WIDTH="116" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img463.png"
 ALT="${\tt RCND} \cdot \sigma_{\max} (A)$">)
as
exactly zero.  The number of singular values treated as nonzero is returned
in <TT>RANK</TT>.  See [<A
 HREF="node151.html#bjorck3">16</A>,<A
 HREF="node151.html#GVL2">55</A>,<A
 HREF="node151.html#higham96">67</A>]
for error bounds in this case, as well as
<A NAME="10908"></A>
[<A
 HREF="node151.html#demmelhigham1">28</A>] for the
underdetermined<A NAME="10910"></A>
<A NAME="10911"></A> case.
The ability to deal with rank-deficient matrices is the principal attraction
of these four drivers, which are more expensive than the simple driver xGELS.

<P>
The solution of the overdetermined,
<A NAME="10912"></A>
<A NAME="10913"></A>
full-rank problem may also be
characterized as the solution of the linear system of equations
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\left( \begin{array}{cc} I & A \\A^T & 0 \end{array} \right) \left( \begin{array}{c} r \\x \end{array} \right) =
\left( \begin{array}{c} b \\0 \end{array} \right) .
\end{displaymath}
 -->


<IMG
 WIDTH="225" HEIGHT="54" BORDER="0"
 SRC="img464.png"
 ALT="\begin{displaymath}
\left( \begin{array}{cc} I &amp; A \\ A^T &amp; 0 \end{array} \right...
...\right) =
\left( \begin{array}{c} b \\ 0 \end{array} \right) .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
By solving this linear system using xyyRFS or xyySVX (see section
<A HREF="node80.html#secAx_b">4.4</A>) componentwise error bounds can also be obtained
[<A
 HREF="node151.html#arioliduffderijk">7</A>].

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5353"
 HREF="node84.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5347"
 HREF="node82.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5343"
 HREF="node82.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5349"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5351"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5354"
 HREF="node84.html">Error Bounds for Generalized</A>
<B> Up:</B> <A NAME="tex2html5348"
 HREF="node82.html">Error Bounds for Linear</A>
<B> Previous:</B> <A NAME="tex2html5344"
 HREF="node82.html">Error Bounds for Linear</A>
 &nbsp <B>  <A NAME="tex2html5350"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5352"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>