1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Linear Equality Constrained Least Squares Problem</TITLE>
<META NAME="description" CONTENT="Linear Equality Constrained Least Squares Problem">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node87.html">
<LINK REL="previous" HREF="node84.html">
<LINK REL="up" HREF="node84.html">
<LINK REL="next" HREF="node86.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5385"
HREF="node86.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5379"
HREF="node84.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5373"
HREF="node84.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5381"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5383"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5386"
HREF="node86.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5380"
HREF="node84.html">Error Bounds for Generalized</A>
<B> Previous:</B> <A NAME="tex2html5374"
HREF="node84.html">Error Bounds for Generalized</A>
  <B> <A NAME="tex2html5382"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5384"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03461000000000000000">
Linear Equality Constrained Least Squares Problem</A>
</H2>
<P>
The linear equality constrained least squares (LSE) problem is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\min_x \| Ax - b \| \quad \mbox{subject to} \quad Bx = d
\end{displaymath}
-->
<IMG
WIDTH="268" HEIGHT="38" BORDER="0"
SRC="img465.png"
ALT="\begin{displaymath}\min_x \Vert Ax - b \Vert \quad \mbox{subject to} \quad Bx = d \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>A</I></B> is an <B><I>m</I></B>-by-<B><I>n</I></B> matrix, <B><I>B</I></B> is a <B><I>p</I></B>-by-<B><I>n</I></B> matrix,
<B><I>b</I></B> is an <B><I>m</I></B> vector, and <B><I>d</I></B> is a <B><I>p</I></B> vector, with
<!-- MATH
$p \leq n \leq p+m$
-->
<IMG
WIDTH="116" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img466.png"
ALT="$p \leq n \leq p+m$">.
<BR>
<P>
The LSE problem is solved by the driver routine xGGLSE
(see section <A HREF="node84.html#sec_lseglm_drivers">4.6</A>).
Let <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img467.png"
ALT="$\widehat {x}$">
be the value of <B><I>x</I></B> computed by xGGLSE.
The approximate error bound
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="439" HEIGHT="130" BORDER="0"
SRC="img468.png"
ALT="\begin{eqnarray*}
% latex2html id marker 10929\frac{ \Vert x - \widehat {x} \...
... ...">
</DIV><P></P>
<BR CLEAR="ALL">
can be computed by the following code fragment
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Get the 2-norm of the right hand side C
CNORM = SNRM2( M, C, 1 )
print*,'CNORM = ',CNORM
* Solve the least squares problem with equality constraints
CALL SGGLSE( M, N, P, A, LDA, B, LDA, C, D, Xc, WORK, LWORK, IWORK, INFO )
* Get the Frobenius norm of A and B
ANORM = SLANTR( 'F', 'U', 'N', N, N, A, LDA, WORK )
BNORM = SLANTR( 'F', 'U', 'N', P, P, B( 1, N-P+1 ), LDA, WORK )
MN = MIN( M, N )
IF( N.EQ.P ) THEN
APPSNM = ZERO
RNORM = SLANTR( '1', 'U', 'N', N, N, B, LDB, WORK(P+MN+N+1) )
CALL STRCON( '1', 'U', 'N', N, B, LDB, RCOND, WORK( P+MN+N+1 ),
$ IWORK, INFO )
BAPSNM = ONE/ (RCOND * RNORM )
ELSE
* Estimate norm of (AP)^+
RNORM = SLANTR( '1', 'U', 'N', N-P, N-P, A, LDA, WORK(P+MN+1) )
CALL STRCON( '1', 'U', 'N', N-P, A, LDA, RCOND, WORK( P+MN+1 ),
$ IWORK, INFO )
APPSNM = ONE/ (RCOND * RNORM )
* Estimate norm of B^+_A
KASE = 0
CALL SLACON( P, WORK( P+MN+1 ), WORK( P+MN+N+1 ), IWORK, EST, KASE )
30 CONTINUE
CALL STRSV( 'Upper', 'No trans', 'Non unit', P, B( 1, N-P+1 ),
$ LDB, WORK( P+MN+N+1 ), 1 )
CALL SGEMV( 'No trans', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
$ WORK( P+MN+N+1 ), 1, ZERO, WORK( P+MN+P+1 ), 1 )
CALL STRSV( 'Upper', 'No transpose', 'Non unit', N-P, A, LDA,
$ WORK( P+MN+P+1 ), 1 )
DO I = 1, P
WORK( P+MN+I ) = WORK( P+MN+N+I )
END DO
CALL SLACON( N, WORK( P+MN+N+1 ), WORK( P+MN+1 ), IWORK, EST, KASE )
*
IF( KASE.EQ.0 ) GOTO 40
DO I = 1, P
WORK( P+MN+N+I ) = WORK( MN+N+I )
END DO
CALL STRSV( 'Upper', 'Trans', 'Non unit', N-P, A, LDA,
$ WORK( P+MN+1 ), 1 )
CALL SGEMV( 'Trans', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
$ WORK( P+MN+1 ), 1, ONE, WORK( P+MN+N+1 ), 1 )
CALL STRSV( 'Upper', 'Trans', 'Non unit', P, B( 1, N-P+1 ),
$ LDB, WORK( P+MN+N+1 ), 1 )
CALL SLACON( P, WORK( P+MN+1 ), WORK( P+MN+N+1 ), IWORK, EST, KASE )
*
IF( KASE.EQ.0 ) GOTO 40
GOTO 30
40 CONTINUE
BAPSNM = EST
*
END IF
* Estimate norm of A*B^+_A
IF( P+M.EQ.N ) THEN
EST = ZERO
ELSE
R22RS = MIN( P, M-N+P )
KASE = 0
CALL SLACON( P, WORK( P+MN+P+1 ), WORK( P+MN+1 ), IWORK, EST, KASE )
50 CONTINUE
CALL STRSV( 'Upper', 'No trans', 'Non unit', P, B( 1, N-P+1 ),
$ LDB, WORK( P+MN+1 ), 1 )
DO I = 1, R22RS
WORK( P+MN+P+I ) = WORK( P+MN+I )
END DO
CALL STRMV( 'Upper', 'No trans', 'Non unit', R22RS,
$ A( N-P+1, N-P+1 ), LDA, WORK( P+MN+P+1 ), 1 )
IF( M.LT.N ) THEN
CALL SGEMV( 'No trans', R22RS, N-M, ONE, A( N-P+1, M+1 ), LDA,
$ WORK( P+MN+R22RS+1 ), 1, ONE, WORK( P+MN+P+1 ), 1 )
END IF
CALL SLACON( R22RS, WORK( P+MN+1 ), WORK( P+MN+P+1 ), IWORK, EST,
$ KASE )
*
IF( KASE.EQ.0 ) GOTO 60
DO I = 1, R22RS
WORK( P+MN+I ) = WORK( P+MN+P+I )
END DO
CALL STRMV( 'Upper', 'Trans', 'Non Unit', R22RS,
$ A( N-P+1, N-P+1 ), LDA, WORK( P+MN+1 ), 1 )
IF( M.LT.N ) THEN
CALL SGEMV( 'Trans', R22RS, N-M, ONE, A( N-P+1, M+1 ), LDA,
$ WORK( P+MN+P+1 ), 1, ZERO, WORK( P+MN+R22RS+1 ), 1 )
END IF
CALL STRSV( 'Upper', 'Trans', 'Non unit', P, B( 1, N-P+1 ), LDB,
$ WORK( P+MN+1 ), 1 )
CALL SLACON( P, WORK( P+MN+P+1 ), WORK( P+MN+1 ), IWORK, EST, KASE )
*
IF( KASE.EQ.0 ) GOTO 60
GOTO 50
60 CONTINUE
END IF
ABAPSN = EST
* Get the 2-norm of Xc
XNORM = SNRM2( N, Xc, 1 )
IF( APPSNM.EQ.0.0E0 ) THEN
* B is square and nonsingular
ERRBD = EPSMCH*BNORM*BAPSNM
ELSE
* Get the 2-norm of the residual A*Xc - C
RNORM = SNRM2( M-N+P, C( N-P+1 ), 1 )
* Get the 2-norm of Xc
XNORM = SNRM2( N, Xc, 1 )
* Get the condition numbers
CNDBA = BNORM*BAPSNM
CNDAB = ANORM*APPSNM
* Get the approximate error bound
ERRBD = EPSMCH*( (1.0E0 + CNORM/(ANORM*XNORM))*CNDAB +
$ RNORM/(ANORM*XNORM)*(1.0E0 + BNORM*ABAPSN/ANORM)*
$ (CNDAB*CNDAB) + 2.0E0*CNDBA )
END IF
</PRE>
<P>
For example, if
<!-- MATH
${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
-->
<IMG
WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img397.png"
ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 \\
1 & -1 & 3 & 1 \\
1 & 1 & 1 & 3 \\
1 & 1 & 1 & -1
\end{tabular} \right),
b = \left( \begin{array}{r}
2 \\
1 \\
6 \\
3 \\
1
\end{array} \right),
B = \left( \begin{tabular}{rrrr}
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1\\
1 & 1 & -1 & 1
\end{tabular} \right)
\quad \mbox{and} \quad
d = \left( \begin{array}{r}
1 \\
3 \\
-1
\end{array} \right),
\end{displaymath}
-->
<IMG
WIDTH="656" HEIGHT="115" BORDER="0"
SRC="img469.png"
ALT="\begin{displaymath}A = \left( \begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & 3 & ...
...left( \begin{array}{r}
1 \\
3 \\
-1
\end{array} \right),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
then (to 7 decimal places),
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\widehat {x} = \left( \begin{array}{r}
0.5000000 \\
-0.5000001 \\
1.4999999 \\
0.4999998
\end{array} \right).
\end{displaymath}
-->
<IMG
WIDTH="172" HEIGHT="93" BORDER="0"
SRC="img470.png"
ALT="\begin{displaymath}\widehat {x} = \left( \begin{array}{r}
0.5000000 \\
-0.5000001 \\
1.4999999 \\
0.4999998
\end{array} \right).\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The computed error bound
<!-- MATH
${\tt ERRBD} = 5.7\cdot10^{-7}$
-->
<IMG
WIDTH="144" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img471.png"
ALT="${\tt ERRBD} = 5.7\cdot10^{-7}$">,
where
<!-- MATH
${\tt CNDAB} = 2.09$
-->
<IMG
WIDTH="104" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img472.png"
ALT="${\tt CNDAB} = 2.09$">,
<!-- MATH
${\tt CNDBA} = 3.12$
-->
<IMG
WIDTH="104" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img473.png"
ALT="${\tt CNDBA} = 3.12$">.
The true error
<!-- MATH
$= 1.2\cdot10^{-7}$
-->
<IMG
WIDTH="93" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img474.png"
ALT="$= 1.2\cdot10^{-7}$">.
The exact solution is
<!-- MATH
$x = [0.5, -0.5, 1.5, 0.5]^T$
-->
<B><I>x</I> = [0.5, -0.5, 1.5, 0.5]<SUP><I>T</I></SUP></B>.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5387"
HREF="node86.html">Further Details:
Error Bounds for Linear Equality Constrained Least Squares Problems</A>
</UL>
<!--End of Table of Child-Links-->
<BR><HR>
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|