1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>General Linear Model Problem</TITLE>
<META NAME="description" CONTENT="General Linear Model Problem">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node85.html">
<LINK REL="up" HREF="node84.html">
<LINK REL="next" HREF="node88.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5410"
HREF="node88.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5404"
HREF="node84.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5400"
HREF="node86.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5406"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5408"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5411"
HREF="node88.html">Further Details: Error Bounds</A>
<B> Up:</B> <A NAME="tex2html5405"
HREF="node84.html">Error Bounds for Generalized</A>
<B> Previous:</B> <A NAME="tex2html5401"
HREF="node86.html">Further Details: Error Bounds</A>
  <B> <A NAME="tex2html5407"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5409"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03462000000000000000">
General Linear Model Problem</A>
</H2>
<P>
The general linear model (GLM) problem is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\min_{x,y} \|y\| \quad \mbox{subject to} \quad d = Ax + By
\end{displaymath}
-->
<IMG
WIDTH="269" HEIGHT="40" BORDER="0"
SRC="img491.png"
ALT="\begin{displaymath}\min_{x,y} \Vert y\Vert \quad \mbox{subject to} \quad d = Ax + By \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where <B><I>A</I></B> is an <B><I>n</I></B>-by-<B><I>m</I></B> matrix, <B><I>B</I></B> is an <B><I>n</I></B>-by-<B><I>p</I></B> matrix, and <B><I>d</I></B>
is a given <B><I>n</I></B>-vector, with
<!-- MATH
$m \leq n \leq m+p$
-->
<IMG
WIDTH="122" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img21.png"
ALT="$m \leq n \leq m+p$">.
<BR>
<P>
The GLM problem is solved by the driver routine xGGGLM
(see section <A HREF="node84.html#sec_lseglm_drivers">4.6</A>).
Let <IMG
WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img467.png"
ALT="$\widehat {x}$">
and <IMG
WIDTH="14" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img492.png"
ALT="$\widehat {y}$">
be the computed values of <B><I>x</I></B> and <B><I>y</I></B>, respectively.
The approximate error bounds
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="441" HEIGHT="111" BORDER="0"
SRC="img493.png"
ALT="\begin{eqnarray*}
% latex2html id marker 11027\frac{ \Vert x - \widehat {x} \...
...hfil ...">
</DIV><P></P>
<BR CLEAR="ALL">
can be computed by the following code fragment
<P>
<PRE>
EPSMCH = SLAMCH( 'E' )
* Compute the 2-norm of the left hand side D
DNORM = SNRM2( N, D, 1 )
* Solve the generalized linear model problem
CALL SGGGLM( N, M, P, A, LDA, B, LDB, D, Xc, Yc, WORK,
$ LWORK, IWORK, INFO )
* Compute the F-norm of A and B
ANORM = SLANTR( 'F', 'U', 'N', M, M, A, LDA, WORK( M+NP+1 ) )
BNORM = SLANTR( 'F', 'U', 'N', N, P, B( 1, MAX( 1, P-N+1 ) ),
$ LDB, WORK( M+NP+1 ) )
* Compute the 2-norm of Xc
XNORM = SNRM2( M, Xc, 1 )
* Condition estimation
IF( N.EQ.M ) THEN
PBPSNM = ZERO
TNORM = SLANTR( '1', 'U', 'N', N, N, A, LDA, WORK( M+NP+M+1 ) )
CALL STRCON( '1', 'U', 'N', N, A, LDA, RCOND, WORK( M+NP+M+1 ),
$ IWORK, INFO )
ABPSNM = ONE / (RCOND * TNORM )
ELSE
* Compute norm of (PB)^+
TNORM = SLANTR( '1', 'U', 'N', N-M, N-M, B( M+1, P-N+M+1 ), LDB,
$ WORK( M+NP+1 ) )
CALL STRCON( '1', 'U', 'N', N-M, B( M+1, P-N+M+1 ), LDB, RCOND,
$ WORK( M+NP+1 ), IWORK, INFO )
PBPSNM = ONE / (RCOND * TNORM )
* Estimate norm of A^+_B
KASE = 0
CALL SLACON( N, WORK( M+NP+1 ), WORK( M+NP+N+1 ), IWORK, EST, KASE )
30 CONTINUE
CALL STRSV( 'Upper', 'No transpose', 'Non unit', N-M,
$ B( M+1, P-N+M+1 ), LDB, WORK( M+NP+N+M+1 ), 1 )
CALL SGEMV( 'No transpose', M, N-M, -ONE, B( 1, P-N+M+1 ),
$ LDB, WORK( M+NP+N+M+1 ), 1, ONE,
$ WORK( M+NP+N+1 ), 1 )
CALL STRSV( 'Upper', 'No transpose', 'Non unit', M, A, LDA,
$ WORK( M+NP+N+1 ), 1 )
DO I = 1, P
WORK( M+NP+I ) = WORK( M+NP+N+I )
END DO
CALL SLACON( M, WORK( M+NP+N+1 ), WORK( M+NP+1 ), IWORK, EST, KASE )
IF( KASE.EQ.0 ) GOTO 40
CALL STRSV( 'Upper', 'Transpose', 'Non unit', M, A, LDA,
$ WORK( M+NP+1 ), 1 )
CALL SGEMV( 'Transpose', M, N-M, -ONE, B( 1, P-N+M+1 ), LDB,
$ WORK( M+NP+1 ), 1, ZERO, WORK( M+NP+M+1 ), 1 )
CALL STRSV( 'Upper', 'Transpose', 'Non unit', N-M,
$ B( M+1, P-N+M+1 ), LDB, WORK( M+NP+M+1 ), 1 )
DO I = 1, N
WORK( M+NP+N+I ) = WORK( M+NP+I )
END DO
CALL SLACON( N, WORK( M+NP+1 ), WORK( M+NP+N+1 ), IWORK, EST, KASE )
IF( KASE.EQ.0 ) GOTO 40
GOTO 30
40 CONTINUE
ABPSNM = EST
END IF
* Estimate norm of (A^+_B)*B
IF( P+M.EQ.N ) THEN
EST = ZERO
ELSE
KASE = 0
CALL SLACON( P-N+M, WORK( M+NP+1 ), WORK( M+NP+M+1 ), IWORK, EST, KASE )
50 CONTINUE
*
IF( P.GE.N ) THEN
CALL STRMV( 'Upper', 'No trans', 'Non Unit', M,
$ B( 1, P-N+1 ), LDB, WORK( M+NP+M+P-N+1 ), 1 )
DO I = 1, M
WORK( M+NP+I ) = WORK( M+NP+M+P-N+I )
END DO
ELSE
CALL SGEMV( 'No transpose', N-P, P-N+M, ONE, B, LDB,
$ WORK( M+NP+M+1 ), 1, ZERO, WORK( M+NP+1 ), 1 )
CALL STRMV( 'Upper', 'No trans', 'Non Unit', P-N+M,
$ B( N-P+1, 1 ), LDB, WORK( M+NP+M+1 ), 1 )
DO I = N-P+1, M
WORK( M+NP+I ) = WORK( M+NP+M-N+P+I )
END DO
END IF
CALL STRSV( 'Upper', 'No transpose', 'Non unit', M, A, LDA,
$ WORK( M+NP+1 ), 1 )
CALL SLACON( M, WORK( M+NP+M+1 ), WORK( M+NP+1 ), IWORK, EST, KASE )
*
IF( KASE.EQ.0 ) GOTO 60
*
CALL STRSV( 'Upper', 'Transpose', 'Non unit', M, A, LDA,
$ WORK( M+NP+1 ), 1 )
IF( P.GE.N ) THEN
CALL STRMV( 'Upper', 'Trans', 'Non Unit', M,
$ B( 1, P-N+1 ), LDB, WORK( M+NP+1 ), 1 )
DO I = 1, M
WORK( M+NP+M+P-N+I ) = WORK( M+NP+I )
END DO
DO I = 1, P-N
WORK( M+NP+M+I ) = ZERO
END DO
ELSE
CALL STRMV( 'Upper', 'Trans', 'Non Unit', P-N+M,
$ B( N-P+1, 1 ), LDB, WORK( M+NP+N-P+1 ), 1 )
DO I = 1, P-N+M
WORK( M+NP+M+I ) = WORK( M+NP+N-P+I )
END DO
CALL SGEMV( 'Transpose', N-P, P-N+M, ONE, B, LDB,
$ WORK( M+NP+1 ), 1, ONE, WORK( M+NP+M+1 ), 1 )
END IF
CALL SLACON( P-N+M, WORK( M+NP+1 ), WORK( M+NP+M+1 ), IWORK, EST,
$ KASE )
*
IF( KASE.EQ.0 ) GOTO 60
GOTO 50
60 CONTINUE
END IF
ABPSBN = EST
* Get condition numbers and approximate error bounds
CNDAB = ANORM*ABPSNM
CNDBA = BNORM*PBPSNM
IF( PBPSNM.EQ.0.0E+0 ) THEN
* Then A is square and nonsingular
XERRBD = EPSMCH*( CNDAB*( ONE+DNORM/(ANORM*XNORM) ) )
YERRBD = 0.0E+0
ELSE
XERRBD = EPSMCH*( CNDAB*( ONE+DNORM/(ANORM*XNORM) ) +
$ 2.0E0*CNDAB*CNDBA*CNDBA*DNORM/(ANORM*XNORM) +
$ ABPSBN*ABPSBN*PBPSNM*PBPSNM*ANORM*DNORM/XNORM )
YERRBD = EPSMCH*( ABPSBN*ANORM*PBPSNM*PBPSNM +
$ PBPSNM*(ANORM*XNORM/DNORM + 2.0E0*CNDBA*CNDBA +
$ ONE) + CNDBA*PBPSNM )
END IF
</PRE>
<P>
For example, if
<!-- MATH
${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$
-->
<IMG
WIDTH="259" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img397.png"
ALT="${\tt SLAMCH('E')} = 2^{-24} = 5.961 \cdot 10^{-8}$">,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
A = \left( \begin{tabular}{rrrr}
1 & 2 & 1 & 4 \\
1 & 3 & 2 & 1 \\
-1 & -2 & -1 & 1 \\
-1 & 2 & -1 & 5 \\
1 & 0 & 0 & 1
\end{tabular} \right), \quad
B = \left( \begin{tabular}{rrr}
1 & 2 & 2 \\
-1 & 1 & -2\\
3 & 1 & 6 \\
1 & -1 & 2 \\
2 & -2 & 4
\end{tabular} \right)
\quad \mbox{and} \quad
d = \left( \begin{array}{r}
1 \\
1 \\
1 \\
1 \\
1
\end{array} \right).
\end{displaymath}
-->
<IMG
WIDTH="544" HEIGHT="115" BORDER="0"
SRC="img494.png"
ALT="\begin{displaymath}A = \left( \begin{tabular}{rrrr}
1 & 2 & 1 & 4 \\
1 & 3 & ...
...array}{r}
1 \\
1 \\
1 \\
1 \\
1
\end{array} \right). \end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
Then (to 7 decimal places)
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\widehat {x} = \left( \begin{array}{r}
-0.5466667 \\
0.3200001 \\
0.7200000 \\
-0.0533334
\end{array} \right)
\quad \mbox{and} \quad
\widehat {y} = \left( \begin{array}{r}
0.1333334 \\
-0.1333334 \\
0.2666667
\end{array} \right).
\end{displaymath}
-->
<IMG
WIDTH="402" HEIGHT="93" BORDER="0"
SRC="img495.png"
ALT="\begin{displaymath}\widehat {x} = \left( \begin{array}{r}
-0.5466667 \\
0.320...
... 0.1333334 \\
-0.1333334 \\
0.2666667
\end{array} \right).\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
The computed error bounds
<!-- MATH
${\tt XERRBD} = 1.2\cdot10^{-5}$
-->
<IMG
WIDTH="153" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img496.png"
ALT="${\tt XERRBD} = 1.2\cdot10^{-5}$">
and
<!-- MATH
${\tt YERRBD} = 6.4\cdot10^{-7}$
-->
<IMG
WIDTH="153" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img497.png"
ALT="${\tt YERRBD} = 6.4\cdot10^{-7}$">,
where
<!-- MATH
${\tt CNDAB} = 26.97$
-->
<IMG
WIDTH="113" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img498.png"
ALT="${\tt CNDAB} = 26.97$">,
<!-- MATH
${\tt CNDBA} = 1.78$
-->
<IMG
WIDTH="104" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img499.png"
ALT="${\tt CNDBA} = 1.78$">,
The true errors in <B><I>x</I></B> and <B><I>y</I></B> are
<!-- MATH
$1.2\cdot10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img500.png"
ALT="$1.2\cdot10^{-7}$">
and
<!-- MATH
$1.3\cdot10^{-7}$
-->
<IMG
WIDTH="75" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img501.png"
ALT="$1.3\cdot10^{-7}$">,
respectively. Note that the exact solutions are
<!-- MATH
$x = \frac{1}{75}[-41,24,54,-4]^T$
-->
<IMG
WIDTH="187" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img502.png"
ALT="$x = \frac{1}{75}[-41,24,54,-4]^T$">
and
<!-- MATH
$y = \frac{1}{15}[2,-2,4]^T$
-->
<IMG
WIDTH="130" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img503.png"
ALT="$y = \frac{1}{15}[2,-2,4]^T$">.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<UL>
<LI><A NAME="tex2html5412"
HREF="node88.html">Further Details: Error Bounds for General Linear Model Problems</A>
</UL>
<!--End of Table of Child-Links-->
<BR><HR>
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|