File: node88.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (350 lines) | stat: -rw-r--r-- 9,863 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for General Linear Model Problems</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for General Linear Model Problems">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node87.html">
<LINK REL="up" HREF="node87.html">
<LINK REL="next" HREF="node89.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5423"
 HREF="node89.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5417"
 HREF="node87.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5413"
 HREF="node87.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5419"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5421"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5424"
 HREF="node89.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5418"
 HREF="node87.html">General Linear Model Problem</A>
<B> Previous:</B> <A NAME="tex2html5414"
 HREF="node87.html">General Linear Model Problem</A>
 &nbsp <B>  <A NAME="tex2html5420"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5422"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03462100000000000000"></A>
<A NAME="sec_lseglm_glmdetails"></A>
<BR>
Further Details:  Error Bounds for General Linear Model Problems
</H3>

<P>
In this subsection, we will summarize the available error bounds.
The reader may also refer to [<A
 HREF="node151.html#lawn31">2</A>,<A
 HREF="node151.html#baifahey97">13</A>,<A
 HREF="node151.html#elden">50</A>,<A
 HREF="node151.html#paige79b">80</A>]
for further details.  
<BR>

<P>
Let <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img467.png"
 ALT="$\widehat {x}$">
and <IMG
 WIDTH="14" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img492.png"
 ALT="$\widehat {y}$">
be the solutions
by the driver routine xGGGLM (see subsection
<A HREF="node84.html#sec_lseglm_drivers">4.6</A>). Then <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img467.png"
 ALT="$\widehat {x}$">
is normwise
backward stable and <IMG
 WIDTH="14" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img492.png"
 ALT="$\widehat {y}$">
is stable
in a mixed forward/backward sense [<A
 HREF="node151.html#baifahey97">13</A>]. Specifically,
we have <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img467.png"
 ALT="$\widehat {x}$">
and 
<!-- MATH
 $\widehat {y} = \bar {y} + \Delta \bar {y}$
 -->
<IMG
 WIDTH="91" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img504.png"
 ALT="$\widehat {y} = \bar {y} + \Delta \bar {y}$">,
where <IMG
 WIDTH="14" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img467.png"
 ALT="$\widehat {x}$">
and <IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img505.png"
 ALT="$\bar {y}$">
solve
  
<!-- MATH
 $\min\{\| y \|_2: \; (A + \Delta A)x + (B + \Delta B)y= d + \Delta d \}$
 -->
<IMG
 WIDTH="375" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img506.png"
 ALT="$\min\{\Vert y \Vert _2: \; (A + \Delta A)x + (B + \Delta B)y= d + \Delta d \} $">,
and
<DIV ALIGN="CENTER">
<IMG
 WIDTH="234" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
 SRC="img507.png"
 ALT="$\textstyle \parbox{2in}{
\begin{eqnarray*}
\Vert \Delta \bar {y} \Vert _2 &amp; \...
... \Delta A \Vert _F &amp; \leq &amp; q(m,n,p)\epsilon\Vert A\Vert _F,
\end{eqnarray*} }$">&nbsp;&nbsp;&nbsp;&nbsp;
<IMG
 WIDTH="234" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
 SRC="img508.png"
 ALT="$\textstyle \parbox{2in}{
\begin{eqnarray*}
\Vert \Delta d \Vert _2 &amp; \leq &amp; q...
...t \Delta B \Vert _F &amp; \leq &amp; q(m,n,p)\epsilon\Vert B\Vert _F,
\end{eqnarray*}}$">
</DIV>
and <B><I>q</I>(<I>m</I>,<I>n</I>,<I>p</I>)</B> is a modestly growing function of <B><I>m</I></B>, <B><I>n</I></B>, and <B><I>p</I></B>.
We take <B><I>q</I>(<I>m</I>,<I>n</I>,<I>p</I>) = 1</B> in the code fragment above.
Let <IMG
 WIDTH="27" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img480.png"
 ALT="$X^{\dagger}$">
denote the Moore-Penrose pseudo-inverse of <B><I>X</I></B>.
Let 
<!-- MATH
 $\kappa_B(A) =  \| A \|_F  \| (A^\dagger_B) \|_2$
 -->
<IMG
 WIDTH="181" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img509.png"
 ALT="$\kappa_B(A) = \Vert A \Vert _F \Vert (A^\dagger_B) \Vert _2 $">( = <TT>CNDAB</TT> above) and
    
<!-- MATH
 $\kappa_A(B) =  \| B \|_F  \| (GB)^\dagger \|_2$
 -->
<IMG
 WIDTH="192" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img510.png"
 ALT="$\kappa_A(B) = \Vert B \Vert _F \Vert (GB)^\dagger \Vert _2 $">( = <TT>CNDBA</TT> above)
where 
<!-- MATH
 $G = I - AA^\dagger$
 -->
<IMG
 WIDTH="105" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img511.png"
 ALT="$G = I - AA^\dagger$">
and 
<!-- MATH
 $A^\dagger_B = A^\dagger[I-B(GB)^\dagger]$
 -->
<IMG
 WIDTH="174" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img512.png"
 ALT="$A^\dagger_B = A^\dagger[I-B(GB)^\dagger]$">.
When 
<!-- MATH
 $q(m,n,p) \epsilon$
 -->
<IMG
 WIDTH="84" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img485.png"
 ALT="$q(m,n,p)\epsilon$">
is small, the errors 
<!-- MATH
 $x-\widehat {x}$
 -->
<IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img513.png"
 ALT="$x-\widehat {x}$">
and 
<!-- MATH
 $y - \widehat {y}$
 -->
<IMG
 WIDTH="44" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img514.png"
 ALT="$y - \widehat {y}$">
are bounded by
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="647" HEIGHT="222" BORDER="0"
 SRC="img515.png"
 ALT="\begin{eqnarray*}
\frac{ \Vert x-\widehat {x} \Vert _2 }{ \Vert x \Vert _2 } &amp; ...
...ght)
+ \Vert B \Vert _F \Vert (GB)^\dagger \Vert _2 ^2 \bigg] .
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL">

<P>
<BR>
<BR>

<P>
When <B><I>B</I> = <I>I</I></B>, the GLM problem is the standard LS problem.
<B><I>y</I></B> is the residual vector <B><I>y</I> = <I>d</I> - <I>Ax</I></B>, and we have
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{ \| x-\widehat {x} \|_2 }{ \| x \|_2 } \leq q(m,n)\epsilon
      \kappa(A)\Bigg( 1 + \frac{ \| d \|_2 }{ \| A \|_F  \| x \|_2 }
         + \kappa(A)\frac{ \| y \|_2 }{ \| A \|_F  \| x \|_2 } \Bigg),
\end{displaymath}
 -->


<IMG
 WIDTH="469" HEIGHT="54" BORDER="0"
 SRC="img516.png"
 ALT="\begin{displaymath}
\frac{ \Vert x-\widehat {x} \Vert _2 }{ \Vert x \Vert _2 } ...
...Vert y \Vert _2 }{ \Vert A \Vert _F \Vert x \Vert _2 } \Bigg),
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
and
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\frac{ \| y - \widehat {y} \|_2 }{ \| y \|_2 } \leq q(m,n)\epsilon
         \kappa(A)\frac{ \| y \|_2 }{ \| d \|_2 } .
\end{displaymath}
 -->


<IMG
 WIDTH="231" HEIGHT="48" BORDER="0"
 SRC="img517.png"
 ALT="\begin{displaymath}
\frac{ \Vert y - \widehat {y} \Vert _2 }{ \Vert y \Vert _2 ...
...ilon
\kappa(A)\frac{ \Vert y \Vert _2 }{ \Vert d \Vert _2 } .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where 
<!-- MATH
 $\kappa(A) = \kappa_B(A) =  \| A \|_F  \| A^\dagger \|_2$
 -->
<IMG
 WIDTH="222" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img518.png"
 ALT="$\kappa(A) = \kappa_B(A) = \Vert A \Vert _F \Vert A^\dagger \Vert _2 $">
and

<!-- MATH
 $\kappa_A(B) = 1$
 -->
<IMG
 WIDTH="85" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img519.png"
 ALT="$\kappa_A(B) = 1$">.
The error bound of 
<!-- MATH
 $x-\widehat {x}$
 -->
<IMG
 WIDTH="46" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img513.png"
 ALT="$x-\widehat {x}$">
is the same
as in the LSE problem (see section&nbsp;<A HREF="node86.html#sec_lseglm_lsedetails">4.6.1.1</A>),
which is essentially the same as given in section 4.5.1.
The bound on the error in <IMG
 WIDTH="14" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img492.png"
 ALT="$\widehat {y}$">
is the same as that provided
in [<A
 HREF="node151.html#GVL2">55</A>, section 5.3.7]. 
<BR>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5423"
 HREF="node89.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5417"
 HREF="node87.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5413"
 HREF="node87.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5419"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5421"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5424"
 HREF="node89.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5418"
 HREF="node87.html">General Linear Model Problem</A>
<B> Previous:</B> <A NAME="tex2html5414"
 HREF="node87.html">General Linear Model Problem</A>
 &nbsp <B>  <A NAME="tex2html5420"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5422"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>