1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for the Symmetric Eigenproblem </TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for the Symmetric Eigenproblem ">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node89.html">
<LINK REL="up" HREF="node89.html">
<LINK REL="next" HREF="node91.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5450"
HREF="node91.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5444"
HREF="node89.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5440"
HREF="node89.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5446"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5448"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5451"
HREF="node91.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5445"
HREF="node89.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5441"
HREF="node89.html">Error Bounds for the</A>
  <B> <A NAME="tex2html5447"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5449"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03471000000000000000"></A><A NAME="secDetailsym"></A>
<BR>
Further Details: Error Bounds for the Symmetric Eigenproblem
</H2>
<P>
The usual error analysis of the
symmetric<A NAME="11258"></A>
eigenproblem (using any LAPACK
routine in subsection <A HREF="node29.html#subsecdriveeig">2.3.4</A>
or any EISPACK routine) is as follows [<A
HREF="node151.html#parlett">85</A>]:
<P>
<BLOCKQUOTE>
The computed eigendecomposition
<!-- MATH
$\hat{Z} \hat{\Lambda} \hat{Z}^T$
-->
<IMG
WIDTH="53" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
SRC="img541.png"
ALT="$\hat{Z} \hat{\Lambda} \hat{Z}^T$">
is nearly
the exact
eigendecomposition of <B><I>A</I>+<I>E</I></B>, i.e.,
<!-- MATH
$A+E = (\hat{Z}+ \delta \hat{Z}) \hat{\Lambda} (\hat{Z}+ \delta \hat{Z})^T$
-->
<IMG
WIDTH="238" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img542.png"
ALT="$A+E = (\hat{Z}+ \delta \hat{Z}) \hat{\Lambda} (\hat{Z}+ \delta \hat{Z})^T$">
is a true eigendecomposition so that
<!-- MATH
$\hat{Z}+ \delta \hat{Z}$
-->
<IMG
WIDTH="60" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img543.png"
ALT="$\hat{Z}+ \delta \hat{Z}$">
is
orthogonal,
where
<!-- MATH
$\|E\|_2 / \|A\|_2 \leq p(n) \epsilon$
-->
<IMG
WIDTH="153" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img544.png"
ALT="$\Vert E\Vert _2 / \Vert A\Vert _2 \leq p(n) \epsilon$">
and
<!-- MATH
$\| \delta \hat{Z} \|_2 \leq p(n) \epsilon$
-->
<IMG
WIDTH="114" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img545.png"
ALT="$\Vert \delta \hat{Z} \Vert _2 \leq p(n) \epsilon$">.
Here <B><I>p</I>(<I>n</I>)</B> is a modestly growing
function of <B><I>n</I></B>. We take <B><I>p</I>(<I>n</I>)=1</B> in the above code fragment.
Each computed eigenvalue
<!-- MATH
$\hat{\lambda}_i$
-->
<IMG
WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img530.png"
ALT="$\hat{\lambda}_i$">
differs from a
true <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img523.png"
ALT="$\lambda_i$">
by at most
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
| \hat{\lambda}_i - \lambda_i | \leq p(n) \cdot \epsilon \cdot \|A\|_2
= {\tt EERRBD} \; .
\end{displaymath}
-->
<IMG
WIDTH="275" HEIGHT="31" BORDER="0"
SRC="img546.png"
ALT="\begin{displaymath}
\vert \hat{\lambda}_i - \lambda_i \vert \leq p(n) \cdot \epsilon \cdot \Vert A\Vert _2
= {\tt EERRBD} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
Thus large eigenvalues (those near
<!-- MATH
$\max_i | \lambda_i | = \|A\|_2$
-->
<IMG
WIDTH="132" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img547.png"
ALT="$\max_i \vert \lambda_i \vert = \Vert A\Vert _2$">)
are computed to high relative accuracy <A NAME="11274"></A> and small ones may not be.
<A NAME="11275"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>There are two questions to ask about the computed eigenvectors:
``Are they orthogonal?'' and ``How much do they differ from the
true eigenvectors?''
The answer to the first question is that except for eigenvectors
computed by computational routine xSTEIN (which is called by drivers
with names ending in -EVX when only a subset of the eigenvalues and
eigenvectors are requested),
the computed eigenvectors
are always nearly orthogonal to working precision, independent of
how much they differ from the true eigenvectors. In other words
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|\hat{z}_i^T \hat{z}_j | = O( \epsilon )
\end{displaymath}
-->
<IMG
WIDTH="99" HEIGHT="32" BORDER="0"
SRC="img548.png"
ALT="\begin{displaymath}
\vert\hat{z}_i^T \hat{z}_j \vert = O( \epsilon )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
for <IMG
WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img549.png"
ALT="$i \neq j$">.
xSTEIN almost
always returns orthogonal eigenvectors, but can occasionally fail when
eigenvalues are tightly clustered.
<A NAME="11278"></A><A NAME="11279"></A><A NAME="11280"></A><A NAME="11281"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Here is the answer to the second question about eigenvectors.
The angular difference between the computed unit eigenvector
<IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img527.png"
ALT="$\hat{z}_i$">
and a true unit eigenvector <B><I>z</I><SUB><I>i</I></SUB></B> satisfies the approximate bound
<A NAME="11282"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \epsilon \|A\|_2}{{\rm gap}_i}
= {\tt ZERRBD}(i)
\end{displaymath}
-->
<IMG
WIDTH="257" HEIGHT="48" BORDER="0"
SRC="img550.png"
ALT="\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\math...
...{p(n) \epsilon \Vert A\Vert _2}{{\rm gap}_i}
= {\tt ZERRBD}(i)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
if <IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img455.png"
ALT="$p(n) \epsilon$">
is small enough.
Here
<!-- MATH
${\rm gap}_i = \min_{j \neq i} | \lambda_i - \lambda_j |$
-->
<IMG
WIDTH="178" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img551.png"
ALT="${\rm gap}_i = \min_{j \neq i} \vert \lambda_i - \lambda_j \vert$">
is the
<B>absolute gap</B><A NAME="11288"></A><A NAME="11289"></A>
between <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img523.png"
ALT="$\lambda_i$">
and the nearest other eigenvalue. Thus, if <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img523.png"
ALT="$\lambda_i$">
is close to other eigenvalues, its corresponding eigenvector <B><I>z</I><SUB><I>i</I></SUB></B>
may be inaccurate.
The gaps may be easily computed from the array of computed eigenvalues
using subroutine <TT>SDISNA</TT><A NAME="11291"></A><A NAME="11292"></A>.
The gaps computed by <TT>SDISNA</TT> are ensured not to be so small as
to cause overflow when used as divisors.
<A NAME="11294"></A>
<A NAME="11295"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Let
<!-- MATH
${\hat{\cal S}}$
-->
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
be the invariant subspace spanned by a collection of eigenvectors
<!-- MATH
$\{\hat{z}_i \, , \, i \in {\cal I}\}$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img552.png"
ALT="$\{\hat{z}_i \, , \, i \in {\cal I}\}$">,
where <IMG
WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img553.png"
ALT="$\cal I$">
is a subset of the
integers from 1 to <B><I>n</I></B>. Let <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
be the corresponding true subspace. Then
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \epsilon \|A\|_2}
{{\rm gap}_{\cal I}}
\end{displaymath}
-->
<IMG
WIDTH="157" HEIGHT="48" BORDER="0"
SRC="img554.png"
ALT="\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex...
...<}$}}\frac{p(n) \epsilon \Vert A\Vert _2}
{{\rm gap}_{\cal I}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
<A NAME="11300"></A>
where
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
| \lambda_i - \lambda_j |
\end{displaymath}
-->
<IMG
WIDTH="153" HEIGHT="50" BORDER="0"
SRC="img555.png"
ALT="\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
\vert \lambda_i - \lambda_j \vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
is the absolute gap between the eigenvalues in <IMG
WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img553.png"
ALT="$\cal I$">
and the nearest
other eigenvalue. Thus, a cluster<A NAME="11304"></A> of
close eigenvalues which is
far away from any other eigenvalue may have a well determined
invariant subspace
<!-- MATH
${\hat{\cal S}}$
-->
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
even if its individual eigenvectors are
ill-conditioned<A NAME="tex2html2204"
HREF="footnode.html#foot13239"><SUP>4.3</SUP></A>.
</BLOCKQUOTE>
<P>
In the special case of a real symmetric tridiagonal matrix <B><I>T</I></B>, the eigenvalues
and eigenvectors can be computed much more accurately. xSYEV (and the other
symmetric eigenproblem drivers) computes the eigenvalues and eigenvectors of
a dense symmetric matrix by first reducing it to tridiagonal form<A NAME="11307"></A> <B><I>T</I></B>, and then
finding the eigenvalues and eigenvectors of <B><I>T</I></B>.
Reduction of a dense matrix to tridiagonal form<A NAME="11308"></A> <B><I>T</I></B> can introduce
additional errors, so the following bounds for the tridiagonal case do not
apply to the dense case.
<P>
<BLOCKQUOTE>
The eigenvalues of <B><I>T</I></B> may be computed with small componentwise relative
backward error
<A NAME="11310"></A>
<A NAME="11311"></A>
(<IMG
WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img250.png"
ALT="$O(\epsilon)$">)
by using subroutine xSTEBZ (subsection
<A NAME="11312"></A><A NAME="11313"></A>
<A HREF="node48.html#subseccompsep">2.4.4</A>)
<A NAME="11315"></A><A NAME="11316"></A>
or driver xSTEVX (subsection <A HREF="node29.html#subsecdriveeig">2.3.4</A>). If <B><I>T</I></B> is also positive definite,
they may also be computed at least as accurately by
xPTEQR<A NAME="11318"></A><A NAME="11319"></A><A NAME="11320"></A><A NAME="11321"></A>
or
xSTEGR<A NAME="11322"></A><A NAME="11323"></A><A NAME="11324"></A><A NAME="11325"></A>
(subsection <A HREF="node48.html#subseccompsep">2.4.4</A>).
To compute error bounds
for the computed eigenvalues
<!-- MATH
$\hat{\lambda}_i$
-->
<IMG
WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img530.png"
ALT="$\hat{\lambda}_i$">
we must make some assumptions
about <B><I>T</I></B>. The bounds discussed here are from [<A
HREF="node151.html#barlowdemmel">14</A>].
Suppose <B><I>T</I></B> is positive definite, and
write <B><I>T</I>=<I>DHD</I></B> where
<!-- MATH
$D = {\mbox {\rm diag}}( t_{11}^{1/2} , \ldots , t_{nn}^{1/2})$
-->
<IMG
WIDTH="182" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
SRC="img556.png"
ALT="$D = {\mbox {\rm diag}}( t_{11}^{1/2} , \ldots , t_{nn}^{1/2})$">
and <B><I>h</I><SUB><I>ii</I></SUB>= 1</B>.
Then the computed eigenvalues
<!-- MATH
$\hat{\lambda}_i$
-->
<IMG
WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img530.png"
ALT="$\hat{\lambda}_i$">
can differ from true eigenvalues <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img523.png"
ALT="$\lambda_i$">
by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
| \hat{\lambda}_i - \lambda_i | \leq p(n) \cdot \epsilon \cdot \kappa_2(H)
\cdot \lambda_i
\end{displaymath}
-->
<IMG
WIDTH="224" HEIGHT="31" BORDER="0"
SRC="img557.png"
ALT="\begin{displaymath}
\vert \hat{\lambda}_i - \lambda_i \vert \leq p(n) \cdot \epsilon \cdot \kappa_2(H)
\cdot \lambda_i
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
Thus if <IMG
WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img558.png"
ALT="$\kappa_2 (H)$">
is moderate, each eigenvalue will be computed
to high relative accuracy, <A NAME="11333"></A> no matter how tiny it is.
The eigenvectors <IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img527.png"
ALT="$\hat{z}_i$">
computed by xPTEQR
can differ from true eigenvectors <B><I>z</I><SUB><I>i</I></SUB></B> by
at most about
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \cdot \epsilon \cdot \kappa_2 (H)}
{{\rm relgap}_i}
\end{displaymath}
-->
<IMG
WIDTH="194" HEIGHT="48" BORDER="0"
SRC="img559.png"
ALT="\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\math...
...\frac{p(n) \cdot \epsilon \cdot \kappa_2 (H)}
{{\rm relgap}_i}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
if <IMG
WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img455.png"
ALT="$p(n) \epsilon$">
is small enough, where
<!-- MATH
${\rm relgap}_i = \min_{j \neq i} | \lambda_i - \lambda_j |/ ( \lambda_i + \lambda_j )$
-->
<IMG
WIDTH="274" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img560.png"
ALT="${\rm relgap}_i = \min_{j \neq i} \vert \lambda_i - \lambda_j \vert/ ( \lambda_i + \lambda_j )$">
is the <B>relative gap</B> between <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img523.png"
ALT="$\lambda_i$">
and the nearest other eigenvalue.
<A NAME="11338"></A><A NAME="11339"></A>
Since the relative gap may be much larger than the absolute gap, this
error bound may be much smaller than the previous one.
Independent of the difference between the computed and true eigenvectors,
the computed eigenvectors are orthogonal to nearly full precision,
i.e.
<!-- MATH
$| \hat{z}_i^T \hat{z}_j | = O( \epsilon )$
-->
<IMG
WIDTH="106" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img561.png"
ALT="$\vert \hat{z}_i^T \hat{z}_j \vert = O( \epsilon )$">
for <IMG
WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img549.png"
ALT="$i \neq j$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE><IMG
WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img558.png"
ALT="$\kappa_2 (H)$">
could be computed by applying
xPTCON (subsection <A HREF="node38.html#subseccomplineq">2.4.1</A>) to <B><I>H</I></B>.
<A NAME="11343"></A><A NAME="11344"></A><A NAME="11345"></A><A NAME="11346"></A>
The relative gaps are easily computed from the
array of computed eigenvalues.
</BLOCKQUOTE>
<P>
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5450"
HREF="node91.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5444"
HREF="node89.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5440"
HREF="node89.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5446"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5448"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5451"
HREF="node91.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5445"
HREF="node89.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5441"
HREF="node89.html">Error Bounds for the</A>
  <B> <A NAME="tex2html5447"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5449"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|