File: node90.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (582 lines) | stat: -rw-r--r-- 17,058 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for the Symmetric Eigenproblem </TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for the Symmetric Eigenproblem ">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node89.html">
<LINK REL="up" HREF="node89.html">
<LINK REL="next" HREF="node91.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5450"
 HREF="node91.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5444"
 HREF="node89.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5440"
 HREF="node89.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5446"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5448"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5451"
 HREF="node91.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5445"
 HREF="node89.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5441"
 HREF="node89.html">Error Bounds for the</A>
 &nbsp <B>  <A NAME="tex2html5447"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5449"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03471000000000000000"></A><A NAME="secDetailsym"></A>
<BR>
Further Details:  Error Bounds for the Symmetric Eigenproblem 
</H2>

<P>
The usual error analysis of the
symmetric<A NAME="11258"></A>
eigenproblem (using any LAPACK
routine in subsection&nbsp;<A HREF="node29.html#subsecdriveeig">2.3.4</A>
or any EISPACK routine) is as follows [<A
 HREF="node151.html#parlett">85</A>]:

<P>
<BLOCKQUOTE>
The computed eigendecomposition 
<!-- MATH
 $\hat{Z} \hat{\Lambda} \hat{Z}^T$
 -->
<IMG
 WIDTH="53" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img541.png"
 ALT="$\hat{Z} \hat{\Lambda} \hat{Z}^T$">
is nearly
the exact
eigendecomposition of <B><I>A</I>+<I>E</I></B>, i.e.,

<!-- MATH
 $A+E = (\hat{Z}+ \delta \hat{Z}) \hat{\Lambda} (\hat{Z}+ \delta \hat{Z})^T$
 -->
<IMG
 WIDTH="238" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img542.png"
 ALT="$A+E = (\hat{Z}+ \delta \hat{Z}) \hat{\Lambda} (\hat{Z}+ \delta \hat{Z})^T$">
is a true eigendecomposition so that 
<!-- MATH
 $\hat{Z}+ \delta \hat{Z}$
 -->
<IMG
 WIDTH="60" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img543.png"
 ALT="$\hat{Z}+ \delta \hat{Z}$">
is
orthogonal,
where 
<!-- MATH
 $\|E\|_2 / \|A\|_2 \leq p(n) \epsilon$
 -->
<IMG
 WIDTH="153" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img544.png"
 ALT="$\Vert E\Vert _2 / \Vert A\Vert _2 \leq p(n) \epsilon$">
and

<!-- MATH
 $\| \delta \hat{Z} \|_2 \leq p(n) \epsilon$
 -->
<IMG
 WIDTH="114" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img545.png"
 ALT="$\Vert \delta \hat{Z} \Vert _2 \leq p(n) \epsilon$">.
Here <B><I>p</I>(<I>n</I>)</B> is a modestly growing
function of <B><I>n</I></B>. We take <B><I>p</I>(<I>n</I>)=1</B> in the above code fragment.
Each computed eigenvalue 
<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
differs from a
true <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
by at most
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| \hat{\lambda}_i - \lambda_i |  \leq p(n) \cdot \epsilon \cdot \|A\|_2
= {\tt EERRBD} \; .
\end{displaymath}
 -->


<IMG
 WIDTH="275" HEIGHT="31" BORDER="0"
 SRC="img546.png"
 ALT="\begin{displaymath}
\vert \hat{\lambda}_i - \lambda_i \vert \leq p(n) \cdot \epsilon \cdot \Vert A\Vert _2
= {\tt EERRBD} \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
Thus large eigenvalues (those near 
<!-- MATH
 $\max_i | \lambda_i | = \|A\|_2$
 -->
<IMG
 WIDTH="132" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img547.png"
 ALT="$\max_i \vert \lambda_i \vert = \Vert A\Vert _2$">)
are computed to high relative accuracy <A NAME="11274"></A> and small ones may not be.
<A NAME="11275"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>There are two questions to ask about the computed eigenvectors:
``Are they orthogonal?'' and ``How much do they differ from the
true eigenvectors?''
The answer to the first question is that except for eigenvectors
computed by computational routine xSTEIN (which is called by drivers
with names ending in -EVX when only a subset of the eigenvalues and
eigenvectors are requested),
the computed eigenvectors
are always nearly orthogonal to working precision, independent of
how much they differ from the true eigenvectors. In other words
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
|\hat{z}_i^T \hat{z}_j | = O( \epsilon )
\end{displaymath}
 -->


<IMG
 WIDTH="99" HEIGHT="32" BORDER="0"
 SRC="img548.png"
 ALT="\begin{displaymath}
\vert\hat{z}_i^T \hat{z}_j \vert = O( \epsilon )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
for <IMG
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img549.png"
 ALT="$i \neq j$">.
xSTEIN almost
always returns orthogonal eigenvectors, but can occasionally fail when
eigenvalues are tightly clustered.
<A NAME="11278"></A><A NAME="11279"></A><A NAME="11280"></A><A NAME="11281"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Here is the answer to the second question about eigenvectors.
The angular difference between the computed unit eigenvector
<IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img527.png"
 ALT="$\hat{z}_i$">
and a true unit eigenvector <B><I>z</I><SUB><I>i</I></SUB></B> satisfies the approximate bound
<A NAME="11282"></A>
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \epsilon \|A\|_2}{{\rm gap}_i}
= {\tt ZERRBD}(i)
\end{displaymath}
 -->


<IMG
 WIDTH="257" HEIGHT="48" BORDER="0"
 SRC="img550.png"
 ALT="\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\math...
...{p(n) \epsilon \Vert A\Vert _2}{{\rm gap}_i}
= {\tt ZERRBD}(i)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
if <IMG
 WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img455.png"
 ALT="$p(n) \epsilon$">
is small enough.
Here 
<!-- MATH
 ${\rm gap}_i = \min_{j \neq i} | \lambda_i - \lambda_j |$
 -->
<IMG
 WIDTH="178" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img551.png"
 ALT="${\rm gap}_i = \min_{j \neq i} \vert \lambda_i - \lambda_j \vert$">
is the
<B>absolute gap</B><A NAME="11288"></A><A NAME="11289"></A>
between <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
and the nearest other eigenvalue.  Thus, if <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
is close to other eigenvalues, its corresponding eigenvector <B><I>z</I><SUB><I>i</I></SUB></B>
may be inaccurate.
The gaps may be easily computed from the array of computed eigenvalues
using subroutine <TT>SDISNA</TT><A NAME="11291"></A><A NAME="11292"></A>.
The gaps computed by <TT>SDISNA</TT> are ensured not to be so small as
to cause overflow when used as divisors.
<A NAME="11294"></A>
<A NAME="11295"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Let 
<!-- MATH
 ${\hat{\cal S}}$
 -->
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
be the invariant subspace spanned by a collection of eigenvectors

<!-- MATH
 $\{\hat{z}_i \, , \, i \in {\cal I}\}$
 -->
<IMG
 WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img552.png"
 ALT="$\{\hat{z}_i \, , \, i \in {\cal I}\}$">,
where <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
is a subset of the
integers from 1 to <B><I>n</I></B>. Let <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
be the corresponding true subspace. Then
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \epsilon \|A\|_2}
{{\rm gap}_{\cal I}}
\end{displaymath}
 -->


<IMG
 WIDTH="157" HEIGHT="48" BORDER="0"
 SRC="img554.png"
 ALT="\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex...
...&lt;}$}}\frac{p(n) \epsilon \Vert A\Vert _2}
{{\rm gap}_{\cal I}}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
<A NAME="11300"></A>
where
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
| \lambda_i - \lambda_j |
\end{displaymath}
 -->


<IMG
 WIDTH="153" HEIGHT="50" BORDER="0"
 SRC="img555.png"
 ALT="\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
\vert \lambda_i - \lambda_j \vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
is the absolute gap between the eigenvalues in <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
and the nearest
other eigenvalue. Thus, a cluster<A NAME="11304"></A> of
close eigenvalues which is
far away from any other eigenvalue may have a well determined
invariant subspace 
<!-- MATH
 ${\hat{\cal S}}$
 -->
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
even if its individual eigenvectors are
ill-conditioned<A NAME="tex2html2204"
 HREF="footnode.html#foot13239"><SUP>4.3</SUP></A>.

</BLOCKQUOTE>

<P>
In the special case of a real symmetric tridiagonal matrix <B><I>T</I></B>, the eigenvalues
and eigenvectors can be computed much more accurately. xSYEV (and the other
symmetric eigenproblem drivers) computes the eigenvalues and eigenvectors of
a dense symmetric matrix by first reducing it to tridiagonal form<A NAME="11307"></A> <B><I>T</I></B>, and then
finding the eigenvalues and eigenvectors of <B><I>T</I></B>.
Reduction of a dense matrix to tridiagonal form<A NAME="11308"></A> <B><I>T</I></B> can introduce
additional errors, so the following bounds for the tridiagonal case do not
apply to the dense case.

<P>
<BLOCKQUOTE>
The eigenvalues of <B><I>T</I></B> may be computed with small componentwise relative
backward error
<A NAME="11310"></A>
<A NAME="11311"></A>
(<IMG
 WIDTH="39" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img250.png"
 ALT="$O(\epsilon)$">)
by using subroutine xSTEBZ (subsection
<A NAME="11312"></A><A NAME="11313"></A>
<A HREF="node48.html#subseccompsep">2.4.4</A>)
<A NAME="11315"></A><A NAME="11316"></A>
or driver xSTEVX (subsection <A HREF="node29.html#subsecdriveeig">2.3.4</A>). If <B><I>T</I></B> is also positive definite,
they may also be computed at least as accurately by
xPTEQR<A NAME="11318"></A><A NAME="11319"></A><A NAME="11320"></A><A NAME="11321"></A>
or
xSTEGR<A NAME="11322"></A><A NAME="11323"></A><A NAME="11324"></A><A NAME="11325"></A>
(subsection <A HREF="node48.html#subseccompsep">2.4.4</A>).
To compute error bounds
for the computed eigenvalues 
<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
we must make some assumptions
about <B><I>T</I></B>. The bounds discussed here are from [<A
 HREF="node151.html#barlowdemmel">14</A>].
Suppose <B><I>T</I></B> is positive definite, and
write <B><I>T</I>=<I>DHD</I></B> where 
<!-- MATH
 $D = {\mbox {\rm diag}}( t_{11}^{1/2} , \ldots , t_{nn}^{1/2})$
 -->
<IMG
 WIDTH="182" HEIGHT="45" ALIGN="MIDDLE" BORDER="0"
 SRC="img556.png"
 ALT="$D = {\mbox {\rm diag}}( t_{11}^{1/2} , \ldots , t_{nn}^{1/2})$">
and <B><I>h</I><SUB><I>ii</I></SUB>= 1</B>.
Then the computed eigenvalues

<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
can differ from true eigenvalues <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
by
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| \hat{\lambda}_i - \lambda_i | \leq p(n) \cdot \epsilon \cdot \kappa_2(H)
\cdot \lambda_i
\end{displaymath}
 -->


<IMG
 WIDTH="224" HEIGHT="31" BORDER="0"
 SRC="img557.png"
 ALT="\begin{displaymath}
\vert \hat{\lambda}_i - \lambda_i \vert \leq p(n) \cdot \epsilon \cdot \kappa_2(H)
\cdot \lambda_i
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where <B><I>p</I>(<I>n</I>)</B> is a modestly growing function of <B><I>n</I></B>.
Thus if <IMG
 WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img558.png"
 ALT="$\kappa_2 (H)$">
is moderate, each eigenvalue will be computed
to high relative accuracy, <A NAME="11333"></A> no matter how tiny it is.
The eigenvectors <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img527.png"
 ALT="$\hat{z}_i$">
computed by xPTEQR
can differ from true eigenvectors <B><I>z</I><SUB><I>i</I></SUB></B> by
at most about
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(n) \cdot \epsilon \cdot \kappa_2 (H)}
{{\rm relgap}_i}
\end{displaymath}
 -->


<IMG
 WIDTH="194" HEIGHT="48" BORDER="0"
 SRC="img559.png"
 ALT="\begin{displaymath}
\theta ( \hat{z}_i , z_i ) \mathrel{\raisebox{-.75ex}{$\math...
...\frac{p(n) \cdot \epsilon \cdot \kappa_2 (H)}
{{\rm relgap}_i}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
if <IMG
 WIDTH="44" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img455.png"
 ALT="$p(n) \epsilon$">
is small enough, where

<!-- MATH
 ${\rm relgap}_i = \min_{j \neq i} | \lambda_i - \lambda_j |/ ( \lambda_i + \lambda_j )$
 -->
<IMG
 WIDTH="274" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img560.png"
 ALT="${\rm relgap}_i = \min_{j \neq i} \vert \lambda_i - \lambda_j \vert/ ( \lambda_i + \lambda_j )$">
is the <B>relative gap</B> between <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
and the nearest other eigenvalue.
<A NAME="11338"></A><A NAME="11339"></A>
Since the relative gap may be much larger than the absolute gap, this
error bound may be much smaller than the previous one.
Independent of the difference between the computed and true eigenvectors,
the computed eigenvectors are orthogonal to nearly full precision,
i.e. 
<!-- MATH
 $| \hat{z}_i^T \hat{z}_j | = O( \epsilon )$
 -->
<IMG
 WIDTH="106" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img561.png"
 ALT="$\vert \hat{z}_i^T \hat{z}_j \vert = O( \epsilon )$">
for <IMG
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img549.png"
 ALT="$i \neq j$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE><IMG
 WIDTH="52" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img558.png"
 ALT="$\kappa_2 (H)$">
could be computed by applying
xPTCON (subsection <A HREF="node38.html#subseccomplineq">2.4.1</A>) to <B><I>H</I></B>.
<A NAME="11343"></A><A NAME="11344"></A><A NAME="11345"></A><A NAME="11346"></A>
The relative gaps are easily computed from the
array of computed eigenvalues.
</BLOCKQUOTE>
<P>

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5450"
 HREF="node91.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5444"
 HREF="node89.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5440"
 HREF="node89.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5446"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5448"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5451"
 HREF="node91.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5445"
 HREF="node89.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5441"
 HREF="node89.html">Error Bounds for the</A>
 &nbsp <B>  <A NAME="tex2html5447"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5449"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>