File: node93.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (631 lines) | stat: -rw-r--r-- 19,101 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Overview</TITLE>
<META NAME="description" CONTENT="Overview">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node94.html">
<LINK REL="previous" HREF="node92.html">
<LINK REL="up" HREF="node92.html">
<LINK REL="next" HREF="node94.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5497"
 HREF="node94.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5491"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5485"
 HREF="node92.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5493"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5495"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5498"
 HREF="node94.html">Balancing and Conditioning</A>
<B> Up:</B> <A NAME="tex2html5492"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5486"
 HREF="node92.html">Further Details: Error Bounds</A>
 &nbsp <B>  <A NAME="tex2html5494"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5496"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03481100000000000000"></A><A NAME="secnepsummary"></A>
<BR>
Overview
</H3>

<P>
In this subsection, we will summarize all the available error bounds.
Later subsections will provide further details. The reader may also
refer to [<A
 HREF="node151.html#baidemmelmckenney">12</A>,<A
 HREF="node151.html#stewartsun90">95</A>].

<P>
Bounds for individual eigenvalues and eigenvectors are provided by
driver xGEEVX (subsection&nbsp;<A HREF="node29.html#subsecdriveeig">2.3.4</A>) or computational
routine xTRSNA (subsection&nbsp;<A HREF="node49.html#subseccompnep">2.4.5</A>).
<A NAME="11403"></A><A NAME="11404"></A><A NAME="11405"></A><A NAME="11406"></A>
<A NAME="11407"></A><A NAME="11408"></A><A NAME="11409"></A><A NAME="11410"></A>
Bounds for
clusters<A NAME="11411"></A> of eigenvalues
and their associated invariant subspace are
provided by driver xGEESX (subsection&nbsp;<A HREF="node29.html#subsecdriveeig">2.3.4</A>) or
<A NAME="11413"></A><A NAME="11414"></A><A NAME="11415"></A><A NAME="11416"></A>
<A NAME="11417"></A><A NAME="11418"></A><A NAME="11419"></A><A NAME="11420"></A>
computational routine xTRSEN (subsection&nbsp;<A HREF="node49.html#subseccompnep">2.4.5</A>).
<A NAME="11422"></A>

<P>
We let 
<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
be the <B><I>i</I><SUP><I>th</I></SUP></B> computed eigenvalue and
<IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
an <B><I>i</I><SUP><I>th</I></SUP></B> true eigenvalue.<A NAME="tex2html2253"
 HREF="footnode.html#foot13242"><SUP>4.1</SUP></A> 

Let <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img564.png"
 ALT="$\hat{v}_i$">
be the
corresponding computed right eigenvector, and <B><I>v</I><SUB><I>i</I></SUB></B> a true right
eigenvector (so 
<!-- MATH
 $Av_i = \lambda_i v_i$
 -->
<IMG
 WIDTH="84" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img563.png"
 ALT="$A v_i = \lambda_i v_i$">).
If <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
is a subset of the
integers from 1 to <B><I>n</I></B>, we let 
<!-- MATH
 $\lambda_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img582.png"
 ALT="$\lambda_{\cal I}$">
denote the average of
the selected eigenvalues:

<!-- MATH
 $\lambda_{\cal I} = (\sum_{i \in \cal I} \lambda_i)/(\sum_{i \in \cal I} 1)$
 -->
<IMG
 WIDTH="192" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img583.png"
 ALT="$\lambda_{\cal I} = (\sum_{i \in \cal I} \lambda_i)/(\sum_{i \in \cal I} 1)$">,
and similarly for 
<!-- MATH
 $\hat{\lambda}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img584.png"
 ALT="$\hat{\lambda}_{\cal I}$">.
We also let 
<!-- MATH
 ${\cal S}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img585.png"
 ALT="${\cal S}_{\cal I}$">
denote the subspace spanned by 
<!-- MATH
 $\{ v_i \, , \, i \in \cal I \}$
 -->
<IMG
 WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img586.png"
 ALT="$\{ v_i \, , \, i \in \cal I \}$">;
it is
called a right invariant subspace because if <B><I>v</I></B> is any vector in 
<!-- MATH
 ${\cal S}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img585.png"
 ALT="${\cal S}_{\cal I}$">
then
<B><I>Av</I></B> is also in 
<!-- MATH
 ${\cal S}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img585.png"
 ALT="${\cal S}_{\cal I}$">.

<!-- MATH
 ${\hat{\cal S}}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img587.png"
 ALT="${\hat{\cal S}}_{\cal I}$">
is the corresponding computed subspace.

<P>
The algorithms for the nonsymmetric eigenproblem are normwise backward stable:
<A NAME="11447"></A>
<A NAME="11448"></A>
they compute the exact eigenvalues, eigenvectors and invariant subspaces
of slightly perturbed matrices <B><I>A</I>+<I>E</I></B>, where 
<!-- MATH
 $\|E\| \leq p(n) \epsilon \|A\|$
 -->
<IMG
 WIDTH="129" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img588.png"
 ALT="$\Vert E\Vert \leq p(n) \epsilon \Vert A\Vert$">.
Some of the bounds are stated in terms of <B>|E|<SUB>2</SUB></B> and others in
terms of <B>|E|<SUB><I>F</I></SUB></B>; one may use 
<!-- MATH
 $p(n) \epsilon \|A\|_1$
 -->
<IMG
 WIDTH="82" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img589.png"
 ALT="$p(n) \epsilon \Vert A\Vert _1$">
to approximate
either quantity.
The code fragment in the previous subsection approximates
<B>|E|</B> by 
<!-- MATH
 $\epsilon \cdot {\tt ABNRM}$
 -->
<IMG
 WIDTH="70" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img590.png"
 ALT="$\epsilon \cdot {\tt ABNRM}$">,
where 
<!-- MATH
 ${\tt ABNRM} = \|A\|_1$
 -->
<IMG
 WIDTH="112" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img591.png"
 ALT="${\tt ABNRM} = \Vert A\Vert _1$">
is returned by xGEEVX.

<P>
xGEEVX (or xTRSNA) returns two quantities for each

<!-- MATH
 $\hat{\lambda_i}$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">,
<IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img564.png"
 ALT="$\hat{v}_i$">
pair: <B><I>s</I><SUB><I>i</I></SUB></B> and <IMG
 WIDTH="34" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img592.png"
 ALT="${\rm sep}_i$">.
xGEESX (or xTRSEN) returns two quantities for a selected subset
<IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
of eigenvalues: <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img593.png"
 ALT="$s_{\cal I}$">
and 
<!-- MATH
 ${\rm sep}_{\cal I}$
 -->
<IMG
 WIDTH="38" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img594.png"
 ALT="${\rm sep}_{\cal I}$">.
<B><I>s</I><SUB><I>i</I></SUB></B> (or <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img593.png"
 ALT="$s_{\cal I}$">)
is a reciprocal condition number for the
computed eigenvalue 
<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
(or 
<!-- MATH
 $\hat{\lambda}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img584.png"
 ALT="$\hat{\lambda}_{\cal I}$">),
and is referred to as <TT>RCONDE</TT> by xGEEVX (or xGEESX).
<A NAME="11460"></A>
<A NAME="11461"></A>
<IMG
 WIDTH="34" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img592.png"
 ALT="${\rm sep}_i$">
(or 
<!-- MATH
 ${\rm sep}_{\cal I}$
 -->
<IMG
 WIDTH="38" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img594.png"
 ALT="${\rm sep}_{\cal I}$">)
is a reciprocal condition number for
the right eigenvector <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img564.png"
 ALT="$\hat{v}_i$">
(or 
<!-- MATH
 ${\cal S}_{\cal I}$
 -->
<IMG
 WIDTH="24" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img585.png"
 ALT="${\cal S}_{\cal I}$">), and
is referred to as <TT>RCONDV</TT> by xGEEVX (or xGEESX).
<A NAME="11467"></A>
The approximate error bounds for eigenvalues, averages of eigenvalues,
eigenvectors, and invariant subspaces
provided in Table&nbsp;<A HREF="node93.html#tabasympnepbounds">4.5</A> are
true for sufficiently small <B>|E|</B>, which is why they are called asymptotic.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabasympnepbounds"></A>
<DIV ALIGN="CENTER">
<A NAME="11470"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table 4.5:</STRONG>
Asymptotic error bounds for the nonsymmetric eigenproblem</CAPTION>
<TR><TD ALIGN="LEFT">Simple eigenvalue</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $|\hat{\lambda}_i - \lambda_i | \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\|E\|_2 / s_i$
 -->
<IMG
 WIDTH="151" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img595.png"
 ALT="$\vert\hat{\lambda}_i - \lambda_i \vert \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle &lt;}$}}\Vert E\Vert _2 / s_i$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvalue cluster</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $|\hat{\lambda}_{\cal I} - \lambda_{\cal I} | \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\|E\|_2 / s_{\cal I}$
 -->
<IMG
 WIDTH="162" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img596.png"
 ALT="$\vert\hat{\lambda}_{\cal I} - \lambda_{\cal I} \vert \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle &lt;}$}}\Vert E\Vert _2 / s_{\cal I}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvector</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta ( \hat{v}_i , v_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\|E\|_F / {\rm sep}_i$
 -->
<IMG
 WIDTH="166" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img597.png"
 ALT="$\theta ( \hat{v}_i , v_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle &lt;}$}}\Vert E\Vert _F / {\rm sep}_i$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Invariant subspace</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta ( {\hat{\cal S}}_{\cal I}, {\cal S}_{\cal I}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\|E\|_F / {\rm sep}_{\cal I}$
 -->
<IMG
 WIDTH="182" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img598.png"
 ALT="$\theta ( {\hat{\cal S}}_{\cal I}, {\cal S}_{\cal I}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle &lt;}$}}\Vert E\Vert _F / {\rm sep}_{\cal I}$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>
<A NAME="11485"></A>
<A NAME="11486"></A>
<A NAME="11487"></A>
<A NAME="11488"></A>

<P>
If the problem is ill-conditioned, the asymptotic bounds may only hold
for extremely small <B>|E|</B>. Therefore, in Table&nbsp;<A HREF="node93.html#tabglobalnepbounds">4.6</A>
we also provide global bounds
which are guaranteed to hold for all 
<!-- MATH
 $\|E\|_F < s \cdot {\rm sep}/ 4$
 -->
<IMG
 WIDTH="133" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img599.png"
 ALT="$\Vert E\Vert _F &lt; s \cdot {\rm sep}/ 4$">.

<P>
<BR>
<DIV ALIGN="CENTER">

<A NAME="tabglobalnepbounds"></A>
<DIV ALIGN="CENTER">
<A NAME="11491"></A>
<TABLE CELLPADDING=3 BORDER="1">
<CAPTION><STRONG>Table:</STRONG>
Global error bounds for the nonsymmetric eigenproblem
assuming 
<!-- MATH
 $\|E\|_F < s_i \cdot {\rm sep}_i / 4$
 -->
<IMG
 WIDTH="144" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img600.png"
 ALT="$\Vert E\Vert _F &lt; s_i \cdot {\rm sep}_i / 4$"></CAPTION>
<TR><TD ALIGN="LEFT">Eigenvalue cluster</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $|\hat{\lambda}_{\cal I} - \lambda_{\cal I} | \leq 2 \|E\|_2 / s_{\cal I}$
 -->
<IMG
 WIDTH="171" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img601.png"
 ALT="$\vert\hat{\lambda}_{\cal I} - \lambda_{\cal I} \vert \leq 2 \Vert E\Vert _2 / s_{\cal I}$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Eigenvector</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta ( \hat{v}_i , v_i ) \leq \arctan (2 \|E\|_F/({\rm sep}_i - 4 \|E\|_F/s_i))$
 -->
<IMG
 WIDTH="345" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img602.png"
 ALT="$\theta ( \hat{v}_i , v_i ) \leq \arctan (2 \Vert E\Vert _F/({\rm sep}_i - 4 \Vert E\Vert _F/s_i))$"></TD>
</TR>
<TR><TD ALIGN="LEFT">Invariant subspace</TD>
<TD ALIGN="CENTER">
<!-- MATH
 $\theta ( {\hat{\cal S}}_{\cal I}, {\cal S}_{\cal I}) \leq \arctan (2 \|E\|_F/({\rm sep}_{\cal I} - 4 \|E\|_F/s_{\cal I}))$
 -->
<IMG
 WIDTH="364" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img603.png"
 ALT="$\theta ( {\hat{\cal S}}_{\cal I}, {\cal S}_{\cal I}) \leq \arctan (2 \Vert E\Vert _F/({\rm sep}_{\cal I} - 4 \Vert E\Vert _F/s_{\cal I}))$"></TD>
</TR>
</TABLE>
</DIV>
</DIV>
<BR>

<P>
We also have the following bound, which is true for all <B><I>E</I></B>:
all the <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
lie in the union of <B><I>n</I></B> disks,
where the <B><I>i</I></B>-th disk is centered at 
<!-- MATH
 $\hat{\lambda}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img530.png"
 ALT="$\hat{\lambda}_i$">
and has
radius 
<!-- MATH
 $n \|E\|_2 / s_i$
 -->
<B><I>n</I> |E|<SUB>2</SUB> / <I>s</I><SUB><I>i</I></SUB></B>. If <B><I>k</I></B> of these disks overlap,
so that any two points inside the <B><I>k</I></B> disks can be connected
by a continuous curve lying entirely inside the <B><I>k</I></B> disks,
and if no larger set of <B><I>k</I>+1</B> disks has this property,
then exactly <B><I>k</I></B> of the <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.png"
 ALT="$\lambda_i$">
lie inside the
union of these <B><I>k</I></B> disks. Figure&nbsp;<A HREF="node93.html#figureBauerFike">4.1</A> illustrates
this for a 10-by-10 matrix, with 4 such overlapping unions
of disks, two containing 1 eigenvalue each, one containing 2
eigenvalues, and one containing 6 eigenvalues.

<P>

<P></P>
<DIV ALIGN="CENTER"><A NAME="figureBauerFike"></A><A NAME="11509"></A>
<TABLE>
<CAPTION><STRONG>Figure 4.1:</STRONG>
Bounding eigenvalues inside overlapping disks</CAPTION>
<TR><TD></TD></TR>
</TABLE>
</DIV><P></P>

<P>
Finally, the quantities <B><I>s</I></B> and <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
tell use how we can best
(block) diagonalize a matrix <B><I>A</I></B> by a similarity,

<!-- MATH
 $V^{-1}AV = {\mbox {\rm diag}}(A_{11} , \ldots , A_{bb})$
 -->
<IMG
 WIDTH="224" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
 SRC="img605.png"
 ALT="$V^{-1}AV = {\mbox {\rm diag}}(A_{11} , \ldots , A_{bb})$">,
where each diagonal block
<B><I>A</I><SUB><I>ii</I></SUB></B> has a selected subset of the eigenvalues of <B><I>A</I></B>. Such a decomposition
may be useful in computing functions of matrices, for example.
The goal is to choose a <B><I>V</I></B> with a nearly minimum condition number
<IMG
 WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img606.png"
 ALT="$\kappa_2 (V)$">
<A NAME="11516"></A>
which performs this decomposition, since this generally minimizes the error
in the decomposition.
This may be done as follows. Let <B><I>A</I><SUB><I>ii</I></SUB></B> be
<B><I>n</I><SUB><I>i</I></SUB></B>-by-<B><I>n</I><SUB><I>i</I></SUB></B>. Then columns 
<!-- MATH
 $1+\sum_{j=1}^{i-1} n_j$
 -->
<IMG
 WIDTH="96" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img607.png"
 ALT="$1+\sum_{j=1}^{i-1} n_j$">
through

<!-- MATH
 $\sum_{j=1}^{i} n_j$
 -->
<IMG
 WIDTH="66" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img608.png"
 ALT="$\sum_{j=1}^{i} n_j$">
of <B><I>V</I></B> span the invariant
subspace<A NAME="11522"></A> of <B><I>A</I></B> corresponding
to the eigenvalues of <B><I>A</I><SUB><I>ii</I></SUB></B>; these columns should be chosen to be any
orthonormal basis of this space (as computed by xGEESX, for example).
Let 
<!-- MATH
 $s_{{\cal I}_i}$
 -->
<IMG
 WIDTH="26" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img609.png"
 ALT="$s_{{\cal I}_i}$">
be the value corresponding to the
cluster of
eigenvalues of <B><I>A</I><SUB><I>ii</I></SUB></B>, as computed by xGEESX or xTRSEN. Then

<!-- MATH
 $\kappa_2 (V) \leq b/ \min_i (s_{{\cal I}_i})$
 -->
<IMG
 WIDTH="161" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img610.png"
 ALT="$\kappa_2 (V) \leq b/ \min_i (s_{{\cal I}_i})$">,
and no other choice of <B><I>V</I></B> can make
its condition number smaller than 
<!-- MATH
 $1/ \min_i (s_{{\cal I}_i})$
 -->
<IMG
 WIDTH="94" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img611.png"
 ALT="$1/ \min_i (s_{{\cal I}_i})$">
[<A
 HREF="node151.html#demmel83">26</A>].
Thus choosing orthonormal
subblocks of <B><I>V</I></B> gets <IMG
 WIDTH="50" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img606.png"
 ALT="$\kappa_2 (V)$">
to within a factor <B><I>b</I></B> of its minimum
value.

<P>
In the case of a real symmetric (or complex Hermitian) matrix,
<B><I>s</I>=1</B> and <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
is the absolute gap, as defined in subsection&nbsp;<A HREF="node89.html#secsym">4.7</A>.
The bounds in Table&nbsp;<A HREF="node93.html#tabasympnepbounds">4.5</A> then reduce to the
bounds in subsection&nbsp;<A HREF="node89.html#secsym">4.7</A>.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5497"
 HREF="node94.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5491"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5485"
 HREF="node92.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5493"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5495"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5498"
 HREF="node94.html">Balancing and Conditioning</A>
<B> Up:</B> <A NAME="tex2html5492"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5486"
 HREF="node92.html">Further Details: Error Bounds</A>
 &nbsp <B>  <A NAME="tex2html5494"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5496"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>