File: node94.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (245 lines) | stat: -rw-r--r-- 8,523 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing and Conditioning</TITLE>
<META NAME="description" CONTENT="Balancing and Conditioning">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node95.html">
<LINK REL="previous" HREF="node93.html">
<LINK REL="up" HREF="node92.html">
<LINK REL="next" HREF="node95.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5511"
 HREF="node95.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5505"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5499"
 HREF="node93.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5507"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5509"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5512"
 HREF="node95.html">Computing s and</A>
<B> Up:</B> <A NAME="tex2html5506"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5500"
 HREF="node93.html">Overview</A>
 &nbsp <B>  <A NAME="tex2html5508"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5510"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03481200000000000000"></A><A NAME="secbalance"></A>
<BR>
Balancing and Conditioning
</H3>

<P>
There are two preprocessing
steps<A NAME="11534"></A> one may perform
on a matrix <B><I>A</I></B> in order
to make its eigenproblem easier. The first is <B>permutation</B>, or
reordering the rows and columns to make <B><I>A</I></B> more nearly upper triangular
(closer to Schur form): <B><I>A</I>' = <I>PAP</I><SUP><I>T</I></SUP></B>, where <B><I>P</I></B> is a permutation matrix.
If <B><I>A</I>'</B> is permutable to upper triangular form (or close to it), then
no floating-point operations (or very few) are needed to reduce it to
Schur form.
The second is <B>scaling</B><A NAME="11537"></A> by a diagonal matrix <B><I>D</I></B> to make the rows and
columns of <B><I>A</I>'</B> more nearly equal in norm: 
<!-- MATH
 $A''= DA'D^{-1}$
 -->
<B><I>A</I>''= <I>DA</I>'<I>D</I><SUP>-1</SUP></B>. Scaling
can make the matrix norm smaller with respect to the eigenvalues, and so
possibly reduce the inaccuracy contributed by roundoff
[<A
 HREF="node151.html#wilkinson3">106</A>, Chap. II/11]. We refer to these two operations as
<B>balancing</B>.

<P>
Balancing is performed by driver xGEEVX, which calls
computational routine xGEBAL. The user may tell xGEEVX to optionally
<A NAME="11541"></A><A NAME="11542"></A><A NAME="11543"></A><A NAME="11544"></A>
permute, scale, do both, or do neither; this is specified by input
parameter <TT>BALANC</TT>. Permuting has no effect on
<A NAME="11546"></A>
the condition numbers
<A NAME="11547"></A>
or their interpretation as described in previous
subsections. Scaling, however, does change their interpretation,
as we now describe.

<P>
The output parameters of xGEEVX -- <TT>SCALE</TT> (real array of length N),
<A NAME="11549"></A>
<A NAME="11550"></A>
<A NAME="11551"></A>
<TT>ILO</TT> (integer), <TT>IHI</TT> (integer) and <TT>ABNRM</TT> (real) -- describe
the result of
balancing a matrix <B><I>A</I></B> into <B><I>A</I>''</B>, where N is the dimension of <B><I>A</I></B>.
The matrix <B><I>A</I>''</B> is block upper triangular, with at most three blocks:
from <B>1</B> to <TT>ILO</TT><B>-1</B>, from <TT>ILO</TT> to <TT>IHI</TT>, and from <TT>IHI</TT><B>+1</B> to N.
The first and last blocks are upper triangular, and so already in Schur
form. These are not scaled; only the block from <TT>ILO</TT> to <TT>IHI</TT> is scaled.
Details of the scaling and permutation are described in <TT>SCALE</TT> (see the
specification of xGEEVX or xGEBAL for details)<A NAME="11562"></A>. The one-norm of
<B><I>A</I>''</B> is returned in <TT>ABNRM</TT>.

<P>
The condition numbers
<A NAME="11564"></A>
described in earlier subsections are computed for
the balanced matrix <B><I>A</I>''</B>, and so some interpretation is needed to
apply them to the eigenvalues and eigenvectors of the original matrix <B><I>A</I></B>.
To use the bounds for eigenvalues in Tables <A HREF="node93.html#tabasympnepbounds">4.5</A> and
<A HREF="node93.html#tabglobalnepbounds">4.6</A>,
we must replace <B>|E|<SUB>2</SUB></B> and <B>|E|<SUB><I>F</I></SUB></B>
by 
<!-- MATH
 $O(\epsilon) \|A''\| = O(\epsilon) \cdot {\tt ABNRM}$
 -->
<IMG
 WIDTH="193" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img612.png"
 ALT="$O(\epsilon) \Vert A''\Vert = O(\epsilon) \cdot {\tt ABNRM}$">.
To use the
bounds for eigenvectors, we also need to take into account that bounds
on rotations of eigenvectors are for the eigenvectors <B><I>x</I>''</B> of
<B><I>A</I>''</B>, which are related to the eigenvectors <B><I>x</I></B> of <B><I>A</I></B> by
<B><I>DPx</I>=<I>x</I>''</B>, or 
<!-- MATH
 $x=P^T D^{-1}x''$
 -->
<B><I>x</I>=<I>P</I><SUP><I>T</I></SUP> <I>D</I><SUP>-1</SUP><I>x</I>''</B>. One coarse but simple way to do this is
as follows: let <IMG
 WIDTH="21" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img613.png"
 ALT="$\theta''$">
be the bound on rotations of <B><I>x</I>''</B> from
Table&nbsp;<A HREF="node93.html#tabasympnepbounds">4.5</A> or Table&nbsp;<A HREF="node93.html#tabglobalnepbounds">4.6</A>
and let <IMG
 WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img328.png"
 ALT="$\theta$">
be the desired bound on rotation of <B><I>x</I></B>. Let
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\kappa (D) =
\frac{{\rule[-.25cm]{0cm}{.5cm} \max_{{\tt ILO} \leq i \leq {\tt IHI}}
{\tt SCALE}(i)}}
{\min_{{\tt ILO} \leq i \leq {\tt IHI}} {\tt SCALE}(i)}
\end{displaymath}
 -->


<IMG
 WIDTH="235" HEIGHT="54" BORDER="0"
 SRC="img614.png"
 ALT="\begin{displaymath}
\kappa (D) =
\frac{{\rule[-.25cm]{0cm}{.5cm} \max_{{\tt ILO}...
...}(i)}}
{\min_{{\tt ILO} \leq i \leq {\tt IHI}} {\tt SCALE}(i)}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
be the condition number of <B><I>D</I></B>.
<A NAME="11579"></A>
Then
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\sin \theta \leq \kappa(D) \cdot \sin \theta'' \; \; .
\end{displaymath}
 -->


<IMG
 WIDTH="162" HEIGHT="31" BORDER="0"
 SRC="img615.png"
 ALT="\begin{displaymath}
\sin \theta \leq \kappa(D) \cdot \sin \theta'' \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<A NAME="11580"></A>
<A NAME="11581"></A>

<P>
The numerical example in subsection&nbsp;<A HREF="node91.html#secnonsym">4.8</A> does no scaling,
just permutation.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5511"
 HREF="node95.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5505"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5499"
 HREF="node93.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5507"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5509"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5512"
 HREF="node95.html">Computing s and</A>
<B> Up:</B> <A NAME="tex2html5506"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5500"
 HREF="node93.html">Overview</A>
 &nbsp <B>  <A NAME="tex2html5508"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5510"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>