1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Balancing and Conditioning</TITLE>
<META NAME="description" CONTENT="Balancing and Conditioning">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="next" HREF="node95.html">
<LINK REL="previous" HREF="node93.html">
<LINK REL="up" HREF="node92.html">
<LINK REL="next" HREF="node95.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5511"
HREF="node95.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5505"
HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5499"
HREF="node93.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5507"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5509"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5512"
HREF="node95.html">Computing s and</A>
<B> Up:</B> <A NAME="tex2html5506"
HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5500"
HREF="node93.html">Overview</A>
  <B> <A NAME="tex2html5508"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5510"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03481200000000000000"></A><A NAME="secbalance"></A>
<BR>
Balancing and Conditioning
</H3>
<P>
There are two preprocessing
steps<A NAME="11534"></A> one may perform
on a matrix <B><I>A</I></B> in order
to make its eigenproblem easier. The first is <B>permutation</B>, or
reordering the rows and columns to make <B><I>A</I></B> more nearly upper triangular
(closer to Schur form): <B><I>A</I>' = <I>PAP</I><SUP><I>T</I></SUP></B>, where <B><I>P</I></B> is a permutation matrix.
If <B><I>A</I>'</B> is permutable to upper triangular form (or close to it), then
no floating-point operations (or very few) are needed to reduce it to
Schur form.
The second is <B>scaling</B><A NAME="11537"></A> by a diagonal matrix <B><I>D</I></B> to make the rows and
columns of <B><I>A</I>'</B> more nearly equal in norm:
<!-- MATH
$A''= DA'D^{-1}$
-->
<B><I>A</I>''= <I>DA</I>'<I>D</I><SUP>-1</SUP></B>. Scaling
can make the matrix norm smaller with respect to the eigenvalues, and so
possibly reduce the inaccuracy contributed by roundoff
[<A
HREF="node151.html#wilkinson3">106</A>, Chap. II/11]. We refer to these two operations as
<B>balancing</B>.
<P>
Balancing is performed by driver xGEEVX, which calls
computational routine xGEBAL. The user may tell xGEEVX to optionally
<A NAME="11541"></A><A NAME="11542"></A><A NAME="11543"></A><A NAME="11544"></A>
permute, scale, do both, or do neither; this is specified by input
parameter <TT>BALANC</TT>. Permuting has no effect on
<A NAME="11546"></A>
the condition numbers
<A NAME="11547"></A>
or their interpretation as described in previous
subsections. Scaling, however, does change their interpretation,
as we now describe.
<P>
The output parameters of xGEEVX -- <TT>SCALE</TT> (real array of length N),
<A NAME="11549"></A>
<A NAME="11550"></A>
<A NAME="11551"></A>
<TT>ILO</TT> (integer), <TT>IHI</TT> (integer) and <TT>ABNRM</TT> (real) -- describe
the result of
balancing a matrix <B><I>A</I></B> into <B><I>A</I>''</B>, where N is the dimension of <B><I>A</I></B>.
The matrix <B><I>A</I>''</B> is block upper triangular, with at most three blocks:
from <B>1</B> to <TT>ILO</TT><B>-1</B>, from <TT>ILO</TT> to <TT>IHI</TT>, and from <TT>IHI</TT><B>+1</B> to N.
The first and last blocks are upper triangular, and so already in Schur
form. These are not scaled; only the block from <TT>ILO</TT> to <TT>IHI</TT> is scaled.
Details of the scaling and permutation are described in <TT>SCALE</TT> (see the
specification of xGEEVX or xGEBAL for details)<A NAME="11562"></A>. The one-norm of
<B><I>A</I>''</B> is returned in <TT>ABNRM</TT>.
<P>
The condition numbers
<A NAME="11564"></A>
described in earlier subsections are computed for
the balanced matrix <B><I>A</I>''</B>, and so some interpretation is needed to
apply them to the eigenvalues and eigenvectors of the original matrix <B><I>A</I></B>.
To use the bounds for eigenvalues in Tables <A HREF="node93.html#tabasympnepbounds">4.5</A> and
<A HREF="node93.html#tabglobalnepbounds">4.6</A>,
we must replace <B>|E|<SUB>2</SUB></B> and <B>|E|<SUB><I>F</I></SUB></B>
by
<!-- MATH
$O(\epsilon) \|A''\| = O(\epsilon) \cdot {\tt ABNRM}$
-->
<IMG
WIDTH="193" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img612.png"
ALT="$O(\epsilon) \Vert A''\Vert = O(\epsilon) \cdot {\tt ABNRM}$">.
To use the
bounds for eigenvectors, we also need to take into account that bounds
on rotations of eigenvectors are for the eigenvectors <B><I>x</I>''</B> of
<B><I>A</I>''</B>, which are related to the eigenvectors <B><I>x</I></B> of <B><I>A</I></B> by
<B><I>DPx</I>=<I>x</I>''</B>, or
<!-- MATH
$x=P^T D^{-1}x''$
-->
<B><I>x</I>=<I>P</I><SUP><I>T</I></SUP> <I>D</I><SUP>-1</SUP><I>x</I>''</B>. One coarse but simple way to do this is
as follows: let <IMG
WIDTH="21" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img613.png"
ALT="$\theta''$">
be the bound on rotations of <B><I>x</I>''</B> from
Table <A HREF="node93.html#tabasympnepbounds">4.5</A> or Table <A HREF="node93.html#tabglobalnepbounds">4.6</A>
and let <IMG
WIDTH="13" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img328.png"
ALT="$\theta$">
be the desired bound on rotation of <B><I>x</I></B>. Let
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\kappa (D) =
\frac{{\rule[-.25cm]{0cm}{.5cm} \max_{{\tt ILO} \leq i \leq {\tt IHI}}
{\tt SCALE}(i)}}
{\min_{{\tt ILO} \leq i \leq {\tt IHI}} {\tt SCALE}(i)}
\end{displaymath}
-->
<IMG
WIDTH="235" HEIGHT="54" BORDER="0"
SRC="img614.png"
ALT="\begin{displaymath}
\kappa (D) =
\frac{{\rule[-.25cm]{0cm}{.5cm} \max_{{\tt ILO}...
...}(i)}}
{\min_{{\tt ILO} \leq i \leq {\tt IHI}} {\tt SCALE}(i)}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
be the condition number of <B><I>D</I></B>.
<A NAME="11579"></A>
Then
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\sin \theta \leq \kappa(D) \cdot \sin \theta'' \; \; .
\end{displaymath}
-->
<IMG
WIDTH="162" HEIGHT="31" BORDER="0"
SRC="img615.png"
ALT="\begin{displaymath}
\sin \theta \leq \kappa(D) \cdot \sin \theta'' \; \; .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<A NAME="11580"></A>
<A NAME="11581"></A>
<P>
The numerical example in subsection <A HREF="node91.html#secnonsym">4.8</A> does no scaling,
just permutation.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5511"
HREF="node95.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5505"
HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5499"
HREF="node93.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5507"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5509"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5512"
HREF="node95.html">Computing s and</A>
<B> Up:</B> <A NAME="tex2html5506"
HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5500"
HREF="node93.html">Overview</A>
  <B> <A NAME="tex2html5508"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5510"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|