File: node95.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (453 lines) | stat: -rw-r--r-- 14,146 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Computing s and </TITLE>
<META NAME="description" CONTENT="Computing s and ">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node94.html">
<LINK REL="up" HREF="node92.html">
<LINK REL="next" HREF="node96.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5523"
 HREF="node96.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5517"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5513"
 HREF="node94.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5519"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5521"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5524"
 HREF="node96.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5518"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5514"
 HREF="node94.html">Balancing and Conditioning</A>
 &nbsp <B>  <A NAME="tex2html5520"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5522"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H3><A NAME="SECTION03481300000000000000"></A><A NAME="secspec"></A>
<BR>
Computing <B><I>s</I></B> and <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
</H3>

<P>
To explain <B><I>s</I></B> and <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$"><A NAME="11585"></A>, we need to
introduce<A NAME="11586"></A>
the <B>spectral projector</B> <B><I>P</I></B> [<A
 HREF="node151.html#stewart73">94</A>,<A
 HREF="node151.html#kato">76</A>], and the
<B>separation of two matrices</B><A NAME="11590"></A>
<B><I>A</I></B> and <B><I>B</I></B>, 
<!-- MATH
 ${\rm sep}(A,B)$
 -->
<IMG
 WIDTH="77" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img616.png"
 ALT="${\rm sep}(A,B)$">
[<A
 HREF="node151.html#stewart73">94</A>,<A
 HREF="node151.html#varah">98</A>].

<P>
We may assume the matrix <B><I>A</I></B> is in Schur form, because reducing it
to this form does not change the values of <B><I>s</I></B> and <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">.
Consider a cluster of <IMG
 WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img617.png"
 ALT="$m \geq 1$">
eigenvalues, counting multiplicities.
Further assume the <B><I>n</I></B>-by-<B><I>n</I></B> matrix <B><I>A</I></B> is
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
A  = \left( \begin{array}{cc} A_{11} & A_{12} \\0 & A_{22} \end{array} \right)
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.1"></A><IMG
 WIDTH="145" HEIGHT="54" BORDER="0"
 SRC="img618.png"
 ALT="\begin{displaymath}
A = \left( \begin{array}{cc} A_{11} &amp; A_{12} \\ 0 &amp; A_{22} \end{array} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where the eigenvalues of the <B><I>m</I></B>-by-<B><I>m</I></B> matrix
<B><I>A</I><SUB>11</SUB></B> are exactly those in which we are
interested. In practice, if the eigenvalues on the diagonal of <B><I>A</I></B>
are in the wrong order, routine xTREXC
<A NAME="11598"></A><A NAME="11599"></A><A NAME="11600"></A><A NAME="11601"></A>
can be used to put the desired ones in the upper left corner
as shown.

<P>
We define the <B>spectral projector</B>, or simply projector <B><I>P</I></B> belonging
to the eigenvalues of <B><I>A</I><SUB>11</SUB></B> as
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
P = \left( \begin{array}{cc} I_m & R \\0 & 0 \end{array} \right)
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.2"></A><IMG
 WIDTH="124" HEIGHT="54" BORDER="0"
 SRC="img619.png"
 ALT="\begin{displaymath}
P = \left( \begin{array}{cc} I_m &amp; R \\ 0 &amp; 0 \end{array} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.2)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <B><I>R</I></B> satisfies the system of linear equations
<BR><P></P>
<DIV ALIGN="CENTER">


<!-- MATH
 \begin{equation}
A_{11}R - RA_{22} = A_{12}.
\end{equation}
 -->
<A NAME="eq2.3"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<B><I>A</I><SUB>11</SUB><I>R</I> - <I>RA</I><SUB>22</SUB> = <I>A</I><SUB>12</SUB>.
</B>
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.3)</TD></TR>
</TABLE>
</DIV>
<BR CLEAR="ALL"><P></P>
Equation (<A HREF="node95.html#eq2.3">4.3</A>) is called a Sylvester equation<A NAME="11611"></A>.
Given the Schur form (<A HREF="node95.html#eq2.1">4.1</A>), we solve equation
(<A HREF="node95.html#eq2.3">4.3</A>) for <B><I>R</I></B> using the subroutine xTRSYL.
<A NAME="11614"></A><A NAME="11615"></A><A NAME="11616"></A><A NAME="11617"></A>

<P>
We can now define <B><I>s</I></B> for the eigenvalues of <B><I>A</I><SUB>11</SUB></B>:
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
s = \frac{1}{\|P\|_2} = \frac{1}{\sqrt{1+\|R\|_2^2}}.
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="189" HEIGHT="57" BORDER="0"
 SRC="img620.png"
 ALT="\begin{displaymath}
s = \frac{1}{\Vert P\Vert _2} = \frac{1}{\sqrt{1+\Vert R\Vert _2^2}}.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.4)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
In practice we do not use this expression since <B>|R|<SUB>2</SUB></B> is hard to
compute. Instead we use the more easily computed underestimate
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
\frac{1}{\sqrt{1+\|R\|_F^2}}
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="88" HEIGHT="57" BORDER="0"
 SRC="img621.png"
 ALT="\begin{displaymath}
\frac{1}{\sqrt{1+\Vert R\Vert _F^2}}
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.5)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
which can underestimate the true value of <B><I>s</I></B> by no more than a factor

<!-- MATH
 $\sqrt { \min ( m,n-m ) }$
 -->
<IMG
 WIDTH="133" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img622.png"
 ALT="$\sqrt { \min ( m,n-m ) }$">.
This underestimation makes our error bounds more conservative.
This approximation of <B><I>s</I></B> is called <TT>RCONDE</TT> in xGEEVX and xGEESX.
<A NAME="11627"></A>

<P>
The <B>separation</B> 
<!-- MATH
 ${\rm sep}(A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
of the matrices <B><I>A</I><SUB>11</SUB></B> and
<B><I>A</I><SUB>22</SUB></B> is defined as the smallest singular value of the linear
map in (<A HREF="node95.html#eq2.3">4.3</A>) which takes <B><I>X</I></B> to 
<!-- MATH
 $A_{11}X - XA_{22}$
 -->
<B><I>A</I><SUB>11</SUB><I>X</I> - <I>XA</I><SUB>22</SUB></B>, i.e.,
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
{\rm sep}(A_{11},A_{22}) = \min_{X \neq 0} \frac{\|A_{11}X - XA_{22}\|_F}
{\| X \|_F}.
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.4"></A><IMG
 WIDTH="300" HEIGHT="48" BORDER="0"
 SRC="img624.png"
 ALT="\begin{displaymath}
{\rm sep}(A_{11},A_{22}) = \min_{X \neq 0} \frac{\Vert A_{11}X - XA_{22}\Vert _F}
{\Vert X \Vert _F}.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.6)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
This formulation lets us estimate 
<!-- MATH
 ${\rm sep}(A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
using the condition estimator
<A NAME="11645"></A>
xLACON [<A
 HREF="node151.html#hager84">59</A>,<A
 HREF="node151.html#higham1">62</A>,<A
 HREF="node151.html#nick2">63</A>], which estimates the norm of
a linear operator <IMG
 WIDTH="42" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img625.png"
 ALT="$\Vert T \Vert _1$">
given the ability to compute <B><I>Tx</I></B> and
<B><I>T</I><SUP><I>T</I></SUP><I>x</I></B> quickly for arbitrary <B><I>x</I></B>.
In our case, multiplying an
arbitrary vector by <B><I>T</I></B>
means solving the Sylvester equation (<A HREF="node95.html#eq2.3">4.3</A>)<A NAME="11648"></A>
with an arbitrary right hand side using xTRSYL, and multiplying by
<B><I>T</I><SUP><I>T</I></SUP></B> means solving the same equation with <B><I>A</I><SUB>11</SUB></B> replaced by
<B><I>A</I><SUB>11</SUB><SUP><I>T</I></SUP></B> and <B><I>A</I><SUB>22</SUB></B> replaced by <B><I>A</I><SUB>22</SUB><SUP><I>T</I></SUP></B>. Solving either equation
costs at most <B><I>O</I>(<I>n</I><SUP>3</SUP>)</B> operations, or as few as <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> if <IMG
 WIDTH="57" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img167.png"
 ALT="$m \ll n$">.
Since the true value of <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
is <B>|T|<SUB>2</SUB></B> but we use <B>|T|<SUB>1</SUB></B>,
our estimate of <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
may differ from the true value by as much as
<IMG
 WIDTH="96" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img626.png"
 ALT="$\sqrt{m(n-m)}$">.
This approximation to <IMG
 WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img2.png"
 ALT="${\rm sep}$">
is called
<TT>RCONDV</TT> by xGEEVX and xGEESX.
<A NAME="11655"></A>

<P>
Another formulation which in principle permits an exact evaluation of

<!-- MATH
 ${\rm sep}( A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
is
<BR>
<DIV ALIGN="RIGHT">


<!-- MATH
 \begin{equation}
{\rm sep}(A_{11},A_{22}) = \sigma_{\min} ( I_{n-m} \otimes A_{11} -
A_{22}^T \otimes I_m )
\end{equation}
 -->

<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.5"></A><IMG
 WIDTH="347" HEIGHT="31" BORDER="0"
 SRC="img627.png"
 ALT="\begin{displaymath}
{\rm sep}(A_{11},A_{22}) = \sigma_{\min} ( I_{n-m} \otimes A_{11} -
A_{22}^T \otimes I_m )
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.7)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where 
<!-- MATH
 $X \otimes Y \equiv [ x_{ij} Y]$
 -->
<IMG
 WIDTH="124" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img628.png"
 ALT="$X \otimes Y \equiv [ x_{ij} Y]$">
is the Kronecker product of <B><I>X</I></B> and <B><I>Y</I></B>.
This method is
generally impractical, however, because the matrix whose smallest singular
value we need is <B><I>m</I>(<I>n</I>-<I>m</I>)</B> dimensional, which can be as large as
<B><I>n</I><SUP>2</SUP>/4</B>. Thus we would require as much as <B><I>O</I>( <I>n</I><SUP>4</SUP> )</B> extra workspace and
<B><I>O</I>(<I>n</I><SUP>6</SUP>)</B> operations, much more than the estimation method of the last
paragraph.

<P>
The expression 
<!-- MATH
 ${\rm sep}( A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
measures the ``separation'' of
the spectra
of <B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> in the following sense. It is zero if and only if
<B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> have a common eigenvalue, and small if there is a small
perturbation of either one that makes them have a common eigenvalue. If
<B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> are both Hermitian matrices, then 
<!-- MATH
 ${\rm sep}( A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
is just the gap, or minimum distance between an eigenvalue of <B><I>A</I><SUB>11</SUB></B> and an
eigenvalue of <B><I>A</I><SUB>22</SUB></B>. On the other hand, if <B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> are
non-Hermitian, 
<!-- MATH
 ${\rm sep}( A_{11},A_{22})$
 -->
<IMG
 WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img623.png"
 ALT="${\rm sep}(A_{11},A_{22})$">
may be much smaller than
this gap.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5523"
 HREF="node96.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5517"
 HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5513"
 HREF="node94.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5519"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5521"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5524"
 HREF="node96.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5518"
 HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5514"
 HREF="node94.html">Balancing and Conditioning</A>
 &nbsp <B>  <A NAME="tex2html5520"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5522"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>