1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Computing s and </TITLE>
<META NAME="description" CONTENT="Computing s and ">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node94.html">
<LINK REL="up" HREF="node92.html">
<LINK REL="next" HREF="node96.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5523"
HREF="node96.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5517"
HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5513"
HREF="node94.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5519"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5521"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5524"
HREF="node96.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5518"
HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5514"
HREF="node94.html">Balancing and Conditioning</A>
  <B> <A NAME="tex2html5520"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5522"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H3><A NAME="SECTION03481300000000000000"></A><A NAME="secspec"></A>
<BR>
Computing <B><I>s</I></B> and <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$">
</H3>
<P>
To explain <B><I>s</I></B> and <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$"><A NAME="11585"></A>, we need to
introduce<A NAME="11586"></A>
the <B>spectral projector</B> <B><I>P</I></B> [<A
HREF="node151.html#stewart73">94</A>,<A
HREF="node151.html#kato">76</A>], and the
<B>separation of two matrices</B><A NAME="11590"></A>
<B><I>A</I></B> and <B><I>B</I></B>,
<!-- MATH
${\rm sep}(A,B)$
-->
<IMG
WIDTH="77" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img616.png"
ALT="${\rm sep}(A,B)$">
[<A
HREF="node151.html#stewart73">94</A>,<A
HREF="node151.html#varah">98</A>].
<P>
We may assume the matrix <B><I>A</I></B> is in Schur form, because reducing it
to this form does not change the values of <B><I>s</I></B> and <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$">.
Consider a cluster of <IMG
WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img617.png"
ALT="$m \geq 1$">
eigenvalues, counting multiplicities.
Further assume the <B><I>n</I></B>-by-<B><I>n</I></B> matrix <B><I>A</I></B> is
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
A = \left( \begin{array}{cc} A_{11} & A_{12} \\0 & A_{22} \end{array} \right)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.1"></A><IMG
WIDTH="145" HEIGHT="54" BORDER="0"
SRC="img618.png"
ALT="\begin{displaymath}
A = \left( \begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where the eigenvalues of the <B><I>m</I></B>-by-<B><I>m</I></B> matrix
<B><I>A</I><SUB>11</SUB></B> are exactly those in which we are
interested. In practice, if the eigenvalues on the diagonal of <B><I>A</I></B>
are in the wrong order, routine xTREXC
<A NAME="11598"></A><A NAME="11599"></A><A NAME="11600"></A><A NAME="11601"></A>
can be used to put the desired ones in the upper left corner
as shown.
<P>
We define the <B>spectral projector</B>, or simply projector <B><I>P</I></B> belonging
to the eigenvalues of <B><I>A</I><SUB>11</SUB></B> as
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
P = \left( \begin{array}{cc} I_m & R \\0 & 0 \end{array} \right)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.2"></A><IMG
WIDTH="124" HEIGHT="54" BORDER="0"
SRC="img619.png"
ALT="\begin{displaymath}
P = \left( \begin{array}{cc} I_m & R \\ 0 & 0 \end{array} \right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.2)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where <B><I>R</I></B> satisfies the system of linear equations
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
A_{11}R - RA_{22} = A_{12}.
\end{equation}
-->
<A NAME="eq2.3"></A>
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<B><I>A</I><SUB>11</SUB><I>R</I> - <I>RA</I><SUB>22</SUB> = <I>A</I><SUB>12</SUB>.
</B>
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.3)</TD></TR>
</TABLE>
</DIV>
<BR CLEAR="ALL"><P></P>
Equation (<A HREF="node95.html#eq2.3">4.3</A>) is called a Sylvester equation<A NAME="11611"></A>.
Given the Schur form (<A HREF="node95.html#eq2.1">4.1</A>), we solve equation
(<A HREF="node95.html#eq2.3">4.3</A>) for <B><I>R</I></B> using the subroutine xTRSYL.
<A NAME="11614"></A><A NAME="11615"></A><A NAME="11616"></A><A NAME="11617"></A>
<P>
We can now define <B><I>s</I></B> for the eigenvalues of <B><I>A</I><SUB>11</SUB></B>:
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
s = \frac{1}{\|P\|_2} = \frac{1}{\sqrt{1+\|R\|_2^2}}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="189" HEIGHT="57" BORDER="0"
SRC="img620.png"
ALT="\begin{displaymath}
s = \frac{1}{\Vert P\Vert _2} = \frac{1}{\sqrt{1+\Vert R\Vert _2^2}}.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.4)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
In practice we do not use this expression since <B>|R|<SUB>2</SUB></B> is hard to
compute. Instead we use the more easily computed underestimate
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\frac{1}{\sqrt{1+\|R\|_F^2}}
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="88" HEIGHT="57" BORDER="0"
SRC="img621.png"
ALT="\begin{displaymath}
\frac{1}{\sqrt{1+\Vert R\Vert _F^2}}
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.5)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
which can underestimate the true value of <B><I>s</I></B> by no more than a factor
<!-- MATH
$\sqrt { \min ( m,n-m ) }$
-->
<IMG
WIDTH="133" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img622.png"
ALT="$\sqrt { \min ( m,n-m ) }$">.
This underestimation makes our error bounds more conservative.
This approximation of <B><I>s</I></B> is called <TT>RCONDE</TT> in xGEEVX and xGEESX.
<A NAME="11627"></A>
<P>
The <B>separation</B>
<!-- MATH
${\rm sep}(A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
of the matrices <B><I>A</I><SUB>11</SUB></B> and
<B><I>A</I><SUB>22</SUB></B> is defined as the smallest singular value of the linear
map in (<A HREF="node95.html#eq2.3">4.3</A>) which takes <B><I>X</I></B> to
<!-- MATH
$A_{11}X - XA_{22}$
-->
<B><I>A</I><SUB>11</SUB><I>X</I> - <I>XA</I><SUB>22</SUB></B>, i.e.,
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
{\rm sep}(A_{11},A_{22}) = \min_{X \neq 0} \frac{\|A_{11}X - XA_{22}\|_F}
{\| X \|_F}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.4"></A><IMG
WIDTH="300" HEIGHT="48" BORDER="0"
SRC="img624.png"
ALT="\begin{displaymath}
{\rm sep}(A_{11},A_{22}) = \min_{X \neq 0} \frac{\Vert A_{11}X - XA_{22}\Vert _F}
{\Vert X \Vert _F}.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.6)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
This formulation lets us estimate
<!-- MATH
${\rm sep}(A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
using the condition estimator
<A NAME="11645"></A>
xLACON [<A
HREF="node151.html#hager84">59</A>,<A
HREF="node151.html#higham1">62</A>,<A
HREF="node151.html#nick2">63</A>], which estimates the norm of
a linear operator <IMG
WIDTH="42" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img625.png"
ALT="$\Vert T \Vert _1$">
given the ability to compute <B><I>Tx</I></B> and
<B><I>T</I><SUP><I>T</I></SUP><I>x</I></B> quickly for arbitrary <B><I>x</I></B>.
In our case, multiplying an
arbitrary vector by <B><I>T</I></B>
means solving the Sylvester equation (<A HREF="node95.html#eq2.3">4.3</A>)<A NAME="11648"></A>
with an arbitrary right hand side using xTRSYL, and multiplying by
<B><I>T</I><SUP><I>T</I></SUP></B> means solving the same equation with <B><I>A</I><SUB>11</SUB></B> replaced by
<B><I>A</I><SUB>11</SUB><SUP><I>T</I></SUP></B> and <B><I>A</I><SUB>22</SUB></B> replaced by <B><I>A</I><SUB>22</SUB><SUP><I>T</I></SUP></B>. Solving either equation
costs at most <B><I>O</I>(<I>n</I><SUP>3</SUP>)</B> operations, or as few as <B><I>O</I>(<I>n</I><SUP>2</SUP>)</B> if <IMG
WIDTH="57" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img167.png"
ALT="$m \ll n$">.
Since the true value of <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$">
is <B>|T|<SUB>2</SUB></B> but we use <B>|T|<SUB>1</SUB></B>,
our estimate of <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$">
may differ from the true value by as much as
<IMG
WIDTH="96" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="img626.png"
ALT="$\sqrt{m(n-m)}$">.
This approximation to <IMG
WIDTH="29" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="${\rm sep}$">
is called
<TT>RCONDV</TT> by xGEEVX and xGEESX.
<A NAME="11655"></A>
<P>
Another formulation which in principle permits an exact evaluation of
<!-- MATH
${\rm sep}( A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
is
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
{\rm sep}(A_{11},A_{22}) = \sigma_{\min} ( I_{n-m} \otimes A_{11} -
A_{22}^T \otimes I_m )
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq2.5"></A><IMG
WIDTH="347" HEIGHT="31" BORDER="0"
SRC="img627.png"
ALT="\begin{displaymath}
{\rm sep}(A_{11},A_{22}) = \sigma_{\min} ( I_{n-m} \otimes A_{11} -
A_{22}^T \otimes I_m )
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4.7)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where
<!-- MATH
$X \otimes Y \equiv [ x_{ij} Y]$
-->
<IMG
WIDTH="124" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img628.png"
ALT="$X \otimes Y \equiv [ x_{ij} Y]$">
is the Kronecker product of <B><I>X</I></B> and <B><I>Y</I></B>.
This method is
generally impractical, however, because the matrix whose smallest singular
value we need is <B><I>m</I>(<I>n</I>-<I>m</I>)</B> dimensional, which can be as large as
<B><I>n</I><SUP>2</SUP>/4</B>. Thus we would require as much as <B><I>O</I>( <I>n</I><SUP>4</SUP> )</B> extra workspace and
<B><I>O</I>(<I>n</I><SUP>6</SUP>)</B> operations, much more than the estimation method of the last
paragraph.
<P>
The expression
<!-- MATH
${\rm sep}( A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
measures the ``separation'' of
the spectra
of <B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> in the following sense. It is zero if and only if
<B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> have a common eigenvalue, and small if there is a small
perturbation of either one that makes them have a common eigenvalue. If
<B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> are both Hermitian matrices, then
<!-- MATH
${\rm sep}( A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
is just the gap, or minimum distance between an eigenvalue of <B><I>A</I><SUB>11</SUB></B> and an
eigenvalue of <B><I>A</I><SUB>22</SUB></B>. On the other hand, if <B><I>A</I><SUB>11</SUB></B> and <B><I>A</I><SUB>22</SUB></B> are
non-Hermitian,
<!-- MATH
${\rm sep}( A_{11},A_{22})$
-->
<IMG
WIDTH="105" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img623.png"
ALT="${\rm sep}(A_{11},A_{22})$">
may be much smaller than
this gap.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5523"
HREF="node96.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5517"
HREF="node92.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5513"
HREF="node94.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5519"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5521"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5524"
HREF="node96.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5518"
HREF="node92.html">Further Details: Error Bounds</A>
<B> Previous:</B> <A NAME="tex2html5514"
HREF="node94.html">Balancing and Conditioning</A>
  <B> <A NAME="tex2html5520"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5522"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|