1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for the Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for the Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node96.html">
<LINK REL="up" HREF="node96.html">
<LINK REL="next" HREF="node98.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5550"
HREF="node98.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5544"
HREF="node96.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5540"
HREF="node96.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5546"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5548"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5551"
HREF="node98.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5545"
HREF="node96.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5541"
HREF="node96.html">Error Bounds for the</A>
  <B> <A NAME="tex2html5547"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5549"
HREF="node152.html">Index</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION03491000000000000000"></A><A NAME="secbackgroundsvd"></A>
<BR>
Further Details: Error Bounds for the Singular Value Decomposition
</H2>
<P>
The usual error analysis of the SVD
algorithms<A NAME="11756"></A>
xGESVD and xGESDD in LAPACK (see subsection <A HREF="node29.html#subsecdriveeig">2.3.4</A>)
or the routines in LINPACK and EISPACK is as follows [<A
HREF="node151.html#demmelMA221">25</A>,<A
HREF="node151.html#GVL2">55</A>]:
<P>
<BLOCKQUOTE>
The SVD algorithm is backward stable.
<A NAME="11760"></A>
<A NAME="11761"></A>
This means that the computed SVD,
<!-- MATH
$\hat{U} \hat{\Sigma} \hat{V}^T$
-->
<IMG
WIDTH="55" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img649.png"
ALT="$\hat{U} \hat{\Sigma} \hat{V}^T$">,
is nearly the exact SVD of <B><I>A</I>+<I>E</I></B> where
<!-- MATH
$\|E\|_2 / \|A\|_2 \leq p(m,n) \epsilon$
-->
<IMG
WIDTH="176" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img650.png"
ALT="$\Vert E\Vert _2 / \Vert A\Vert _2 \leq p(m,n) \epsilon$">,
and <B><I>p</I>(<I>m</I>,<I>n</I>)</B> is a modestly growing function of <B><I>m</I></B> and <B><I>n</I></B>. This means
<!-- MATH
$A+E = (\hat{U} + \delta \hat{U}) \hat{\Sigma} (\hat{V}+ \delta \hat{V})$
-->
<IMG
WIDTH="231" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img651.png"
ALT="$A+E = (\hat{U} + \delta \hat{U}) \hat{\Sigma} (\hat{V}+ \delta \hat{V})$">
is the true SVD, so that
<!-- MATH
$\hat{U}+ \delta \hat{U}$
-->
<IMG
WIDTH="62" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img652.png"
ALT="$\hat{U}+ \delta \hat{U}$">
and
<!-- MATH
$\hat{V}+ \delta
\hat{V}$
-->
<IMG
WIDTH="62" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img653.png"
ALT="$\hat{V}+ \delta
\hat{V}$">
are both orthogonal, where
<!-- MATH
$\| \delta \hat{U} \| \leq p(m,n) \epsilon$
-->
<IMG
WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img654.png"
ALT="$\Vert \delta \hat{U} \Vert \leq p(m,n) \epsilon$">,
and
<!-- MATH
$\| \delta \hat{V} \| \leq p(m,n) \epsilon$
-->
<IMG
WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img655.png"
ALT="$\Vert \delta \hat{V} \Vert \leq p(m,n) \epsilon$">.
Each computed singular value
<!-- MATH
$\hat{\sigma}_i$
-->
<IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img635.png"
ALT="$\hat{\sigma}_i$">
differs from true <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">
by at most
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
| \hat{\sigma}_i - \sigma_i | \leq p(m,n) \cdot \epsilon \cdot \sigma_1
= {\tt SERRBD} \; ,
\end{displaymath}
-->
<IMG
WIDTH="276" HEIGHT="31" BORDER="0"
SRC="img656.png"
ALT="\begin{displaymath}
\vert \hat{\sigma}_i - \sigma_i \vert \leq p(m,n) \cdot \epsilon \cdot \sigma_1
= {\tt SERRBD} \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
(we take <B><I>p</I>(<I>m</I>,<I>n</I>)=1</B> in the code fragment).
Thus large singular values (those near <IMG
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img657.png"
ALT="$\sigma_1$">)
are computed to
high relative accuracy <A NAME="11777"></A> and small ones may not be.
<A NAME="11778"></A>
<A NAME="11779"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>There are two questions to ask about the computed singular vectors:
``Are they orthogonal?'' and ``How much do they differ from the
true eigenvectors?''
The answer to the first question is yes,
the computed singular vectors
are always nearly orthogonal to working precision, independent of
how much they differ from the true singular vectors. In other words
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
|\hat{u}_i^T \hat{u}_j | = O( \epsilon )
\end{displaymath}
-->
<IMG
WIDTH="102" HEIGHT="32" BORDER="0"
SRC="img658.png"
ALT="\begin{displaymath}
\vert\hat{u}_i^T \hat{u}_j \vert = O( \epsilon )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
for <IMG
WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img549.png"
ALT="$i \neq j$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Here is the answer to the second question about singular vectors.
The angular difference between the computed left singular vector <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img632.png"
ALT="$\hat{u}_i$">
and a true <B><I>u</I><SUB><I>i</I></SUB></B> satisfies the approximate bound
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon \|A\|_2}{{\rm gap}_i}
= {\tt UERRBD}(i)
\end{displaymath}
-->
<IMG
WIDTH="285" HEIGHT="48" BORDER="0"
SRC="img659.png"
ALT="\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\math...
...(m,n) \epsilon \Vert A\Vert _2}{{\rm gap}_i}
= {\tt UERRBD}(i)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where
<!-- MATH
${\rm gap}_i = \min_{j \neq i} | \sigma_i - \sigma_j |$
-->
<IMG
WIDTH="177" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img660.png"
ALT="${\rm gap}_i = \min_{j \neq i} \vert \sigma_i - \sigma_j \vert$">
is the
<B>absolute gap</B><A NAME="11787"></A><A NAME="11788"></A>
between <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">
and the nearest other singular value.
We take <B><I>p</I>(<I>m</I>,<I>n</I>)=1</B> in the code fragment.
Thus, if <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">
is close to other singular values, its corresponding singular vector <B><I>u</I><SUB><I>i</I></SUB></B>
may be inaccurate. When <B><I>n</I> < <I>m</I></B>, then <IMG
WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img661.png"
ALT="${\rm gap}_n$">
must be redefined
as
<!-- MATH
$\min ( \min_{j \neq n} ( | \sigma_n - \sigma_j | , \sigma_n ) )$
-->
<IMG
WIDTH="209" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img662.png"
ALT="$\min ( \min_{j \neq n} ( \vert \sigma_n - \sigma_j \vert , \sigma_n ) )$">.
The gaps may be easily computed from the array of computed singular values
using function <A NAME="11790"></A><A NAME="11791"></A><TT>SDISNA</TT>.
The gaps computed by <TT>SDISNA</TT> are ensured not to be so small as
to cause overflow when used as divisors.
<A NAME="11794"></A>
<A NAME="11795"></A>
The same bound applies to the computed right singular
vector <IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img564.png"
ALT="$\hat{v}_i$">
and a true vector <B><I>v</I><SUB><I>i</I></SUB></B>.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Let
<!-- MATH
${\hat{\cal S}}$
-->
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
be the space spanned by a collection of computed left singular
vectors
<!-- MATH
$\{\hat{u}_i \, , \, i \in {\cal I}\}$
-->
<IMG
WIDTH="89" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img663.png"
ALT="$\{\hat{u}_i \, , \, i \in {\cal I}\}$">,
where <IMG
WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img553.png"
ALT="$\cal I$">
is a subset
of the integers from 1 to <B><I>n</I></B>. Let <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="img318.png"
ALT="$\cal S$">
be the corresponding true space.
Then
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon \|A\|_2}
{{\rm gap}_{\cal I}} .
\end{displaymath}
-->
<IMG
WIDTH="186" HEIGHT="48" BORDER="0"
SRC="img664.png"
ALT="\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex...
...}\frac{p(m,n) \epsilon \Vert A\Vert _2}
{{\rm gap}_{\cal I}} .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
| \sigma_i - \sigma_j |
\end{displaymath}
-->
<IMG
WIDTH="153" HEIGHT="50" BORDER="0"
SRC="img665.png"
ALT="\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
\vert \sigma_i - \sigma_j \vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
is the absolute gap between the singular values in <IMG
WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="img553.png"
ALT="$\cal I$">
and the nearest
other singular value. Thus, a cluster<A NAME="11803"></A>
of close singular values which is
far away from any other singular value may have a well determined
space
<!-- MATH
${\hat{\cal S}}$
-->
<IMG
WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
SRC="img320.png"
ALT="$\hat{\cal S}$">
even if its individual singular vectors are ill-conditioned.
The same bound applies to a set of right singular vectors
<!-- MATH
$\{\hat{v}_i \, , \, i \in {\cal I}\}$
-->
<IMG
WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img666.png"
ALT="$\{\hat{v}_i \, , \, i \in {\cal I}\}$"><A NAME="tex2html2331"
HREF="footnode.html#foot13254"><SUP>4.1</SUP></A>.
</BLOCKQUOTE>
<P>
<P>
In the special case of bidiagonal matrices, the singular values and
singular vectors may be computed much more accurately. A bidiagonal
matrix <B><I>B</I></B> has nonzero entries only on the main diagonal and the diagonal
immediately
above it (or immediately below it). xGESVD computes the SVD of a general
<A NAME="11811"></A><A NAME="11812"></A><A NAME="11813"></A><A NAME="11814"></A>
matrix by first reducing it to bidiagonal form <B><I>B</I></B>, and then calling xBDSQR
<A NAME="11815"></A><A NAME="11816"></A><A NAME="11817"></A><A NAME="11818"></A>
(subsection <A HREF="node53.html#subseccompsvd">2.4.6</A>)
to compute the SVD of <B><I>B</I></B>.
xGESDD is similar, but calls xBDSDC to compute the SVD of <B><I>B</I></B>.
<A NAME="11820"></A><A NAME="11821"></A>
Reduction of a dense matrix to bidiagonal form <B><I>B</I></B> can introduce
additional errors, so the following bounds for the bidiagonal case
do not apply to the dense case.
<P>
<BLOCKQUOTE>
Each computed singular value of a bidiagonal matrix
is accurate to nearly full relative accuracy<A NAME="11823"></A>,
no matter how tiny it is:
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
| \hat{\sigma}_i - \sigma_i | \leq p(m,n) \cdot \epsilon \cdot \sigma_i.
\end{displaymath}
-->
<IMG
WIDTH="191" HEIGHT="31" BORDER="0"
SRC="img668.png"
ALT="\begin{displaymath}
\vert \hat{\sigma}_i - \sigma_i \vert \leq p(m,n) \cdot \epsilon \cdot \sigma_i.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
<A NAME="11824"></A>
<A NAME="11825"></A>
The following bounds apply only to xBDSQR.
The computed left singular vector <IMG
WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img632.png"
ALT="$\hat{u}_i$">
has an angular error
at most about
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon}{{\rm relgap}_i}
\end{displaymath}
-->
<IMG
WIDTH="149" HEIGHT="48" BORDER="0"
SRC="img669.png"
ALT="\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\math...
...limits^{\textstyle <}$}}\frac{p(m,n) \epsilon}{{\rm relgap}_i}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where
<!-- MATH
${\rm relgap}_i = \min_{j \neq i} | \sigma_i - \sigma_j | / ( \sigma_i + \sigma_j )$
-->
<IMG
WIDTH="273" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
SRC="img670.png"
ALT="${\rm relgap}_i = \min_{j \neq i} \vert \sigma_i - \sigma_j \vert / ( \sigma_i + \sigma_j )$">
is the <B>relative gap</B> between <IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="img36.png"
ALT="$\sigma _ i $">
and the nearest other singular
value. The same bound applies to the right singular vector <IMG
WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img564.png"
ALT="$\hat{v}_i$">
and <B><I>v</I><SUB><I>i</I></SUB></B>.
Since the relative gap<A NAME="11830"></A><A NAME="11831"></A> may be much larger than
the absolute gap<A NAME="11832"></A><A NAME="11833"></A>,
this error bound may be much smaller than the previous one. The relative gaps
may be easily computed from the array of computed singular values.
</BLOCKQUOTE>
<P>
In the very special case of 2-by-2 bidiagonal matrices, xBDSQR and xBDSDC
call auxiliary routine xLASV2 to compute the SVD. xLASV2 will
actually compute nearly correctly rounded singular vectors independent of
the relative gap, but this requires accurate computer arithmetic:
if leading digits cancel during floating-point subtraction, the resulting
difference must be exact.
On machines without guard digits one has the slightly weaker result that the
algorithm is componentwise relatively backward stable, and therefore the
accuracy <A NAME="11835"></A> of the singular vectors depends on the relative gap as described
above.
<A NAME="11836"></A>
<A NAME="11837"></A>
<P>
Jacobi's method [<A
HREF="node151.html#demmelveselic">34</A>,<A
HREF="node151.html#veselicslapnicar">99</A>,<A
HREF="node151.html#slapnicar1">91</A>] is another
algorithm for finding singular values and singular vectors of matrices.
It is slower than the algorithms based on first bidiagonalizing the matrix,
but is capable of computing more accurate answers in several important cases.
<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5550"
HREF="node98.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="next_motif.png"></A>
<A NAME="tex2html5544"
HREF="node96.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="up_motif.png"></A>
<A NAME="tex2html5540"
HREF="node96.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="previous_motif.png"></A>
<A NAME="tex2html5546"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
SRC="contents_motif.png"></A>
<A NAME="tex2html5548"
HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
SRC="index_motif.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html5551"
HREF="node98.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5545"
HREF="node96.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5541"
HREF="node96.html">Error Bounds for the</A>
  <B> <A NAME="tex2html5547"
HREF="node1.html">Contents</A></B>
  <B> <A NAME="tex2html5549"
HREF="node152.html">Index</A></B>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>
|