File: node97.html

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (557 lines) | stat: -rw-r--r-- 16,655 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.2 beta6 (August 14th, 1998)
original version by:  Nikos Drakos, CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Further Details: Error Bounds for the Singular Value Decomposition</TITLE>
<META NAME="description" CONTENT="Further Details: Error Bounds for the Singular Value Decomposition">
<META NAME="keywords" CONTENT="lug_l2h">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="lug_l2h.css">
<LINK REL="previous" HREF="node96.html">
<LINK REL="up" HREF="node96.html">
<LINK REL="next" HREF="node98.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5550"
 HREF="node98.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5544"
 HREF="node96.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5540"
 HREF="node96.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5546"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5548"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5551"
 HREF="node98.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5545"
 HREF="node96.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5541"
 HREF="node96.html">Error Bounds for the</A>
 &nbsp <B>  <A NAME="tex2html5547"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5549"
 HREF="node152.html">Index</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION03491000000000000000"></A><A NAME="secbackgroundsvd"></A>
<BR>
Further Details:  Error Bounds for the Singular Value Decomposition
</H2>

<P>
The usual error analysis of the SVD
algorithms<A NAME="11756"></A>
xGESVD and xGESDD in LAPACK (see subsection <A HREF="node29.html#subsecdriveeig">2.3.4</A>)
or the routines in LINPACK and EISPACK is as follows [<A
 HREF="node151.html#demmelMA221">25</A>,<A
 HREF="node151.html#GVL2">55</A>]:

<P>
<BLOCKQUOTE>
The SVD algorithm is backward stable.
<A NAME="11760"></A>
<A NAME="11761"></A>
This means that the computed SVD, 
<!-- MATH
 $\hat{U} \hat{\Sigma} \hat{V}^T$
 -->
<IMG
 WIDTH="55" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img649.png"
 ALT="$\hat{U} \hat{\Sigma} \hat{V}^T$">,
is nearly the exact SVD of <B><I>A</I>+<I>E</I></B> where 
<!-- MATH
 $\|E\|_2 / \|A\|_2 \leq p(m,n) \epsilon$
 -->
<IMG
 WIDTH="176" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img650.png"
 ALT="$\Vert E\Vert _2 / \Vert A\Vert _2 \leq p(m,n) \epsilon$">,
and <B><I>p</I>(<I>m</I>,<I>n</I>)</B> is a modestly growing function of <B><I>m</I></B> and <B><I>n</I></B>. This means

<!-- MATH
 $A+E = (\hat{U} + \delta \hat{U}) \hat{\Sigma} (\hat{V}+ \delta \hat{V})$
 -->
<IMG
 WIDTH="231" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img651.png"
 ALT="$A+E = (\hat{U} + \delta \hat{U}) \hat{\Sigma} (\hat{V}+ \delta \hat{V})$">
is the true SVD, so that 
<!-- MATH
 $\hat{U}+ \delta \hat{U}$
 -->
<IMG
 WIDTH="62" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img652.png"
 ALT="$\hat{U}+ \delta \hat{U}$">
and 
<!-- MATH
 $\hat{V}+ \delta
\hat{V}$
 -->
<IMG
 WIDTH="62" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img653.png"
 ALT="$\hat{V}+ \delta
\hat{V}$">
are both orthogonal, where

<!-- MATH
 $\| \delta \hat{U} \| \leq p(m,n) \epsilon$
 -->
<IMG
 WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img654.png"
 ALT="$\Vert \delta \hat{U} \Vert \leq p(m,n) \epsilon$">,
and

<!-- MATH
 $\| \delta \hat{V} \| \leq p(m,n) \epsilon$
 -->
<IMG
 WIDTH="130" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img655.png"
 ALT="$\Vert \delta \hat{V} \Vert \leq p(m,n) \epsilon$">.
Each computed singular value 
<!-- MATH
 $\hat{\sigma}_i$
 -->
<IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img635.png"
 ALT="$\hat{\sigma}_i$">
differs from true <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
by at most
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| \hat{\sigma}_i - \sigma_i | \leq p(m,n) \cdot \epsilon \cdot \sigma_1
= {\tt SERRBD} \; ,
\end{displaymath}
 -->


<IMG
 WIDTH="276" HEIGHT="31" BORDER="0"
 SRC="img656.png"
 ALT="\begin{displaymath}
\vert \hat{\sigma}_i - \sigma_i \vert \leq p(m,n) \cdot \epsilon \cdot \sigma_1
= {\tt SERRBD} \; ,
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
(we take <B><I>p</I>(<I>m</I>,<I>n</I>)=1</B> in the code fragment).
Thus large singular values (those near <IMG
 WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img657.png"
 ALT="$\sigma_1$">)
are computed to
high relative accuracy <A NAME="11777"></A> and small ones may not be.
<A NAME="11778"></A>
<A NAME="11779"></A>
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>There are two questions to ask about the computed singular vectors:
``Are they orthogonal?'' and ``How much do they differ from the
true eigenvectors?''
The answer to the first question is yes,
the computed singular vectors
are always nearly orthogonal to working precision, independent of
how much they differ from the true singular vectors. In other words
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
|\hat{u}_i^T \hat{u}_j | = O( \epsilon )
\end{displaymath}
 -->


<IMG
 WIDTH="102" HEIGHT="32" BORDER="0"
 SRC="img658.png"
 ALT="\begin{displaymath}
\vert\hat{u}_i^T \hat{u}_j \vert = O( \epsilon )
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
for <IMG
 WIDTH="42" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img549.png"
 ALT="$i \neq j$">.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Here is the answer to the second question about singular vectors.
The angular difference between the computed left singular vector <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img632.png"
 ALT="$\hat{u}_i$">
and a true <B><I>u</I><SUB><I>i</I></SUB></B> satisfies the approximate bound
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon \|A\|_2}{{\rm gap}_i}
= {\tt UERRBD}(i)
\end{displaymath}
 -->


<IMG
 WIDTH="285" HEIGHT="48" BORDER="0"
 SRC="img659.png"
 ALT="\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\math...
...(m,n) \epsilon \Vert A\Vert _2}{{\rm gap}_i}
= {\tt UERRBD}(i)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where 
<!-- MATH
 ${\rm gap}_i = \min_{j \neq i} | \sigma_i - \sigma_j |$
 -->
<IMG
 WIDTH="177" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img660.png"
 ALT="${\rm gap}_i = \min_{j \neq i} \vert \sigma_i - \sigma_j \vert$">
is the
<B>absolute gap</B><A NAME="11787"></A><A NAME="11788"></A>
between <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
and the nearest other singular value.
We take <B><I>p</I>(<I>m</I>,<I>n</I>)=1</B> in the code fragment.
Thus, if <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
is close to other singular values, its corresponding singular vector <B><I>u</I><SUB><I>i</I></SUB></B>
may be inaccurate. When <B><I>n</I> &lt; <I>m</I></B>, then <IMG
 WIDTH="41" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img661.png"
 ALT="${\rm gap}_n$">
must be redefined
as 
<!-- MATH
 $\min ( \min_{j \neq n} ( | \sigma_n - \sigma_j | , \sigma_n ) )$
 -->
<IMG
 WIDTH="209" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img662.png"
 ALT="$\min ( \min_{j \neq n} ( \vert \sigma_n - \sigma_j \vert , \sigma_n ) )$">.
The gaps may be easily computed from the array of computed singular values
using function <A NAME="11790"></A><A NAME="11791"></A><TT>SDISNA</TT>.
The gaps computed by <TT>SDISNA</TT> are ensured not to be so small as
to cause overflow when used as divisors.
<A NAME="11794"></A>
<A NAME="11795"></A>
The same bound applies to the computed right singular
vector <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img564.png"
 ALT="$\hat{v}_i$">
and a true vector <B><I>v</I><SUB><I>i</I></SUB></B>.
</BLOCKQUOTE>
<P>
<BLOCKQUOTE>Let 
<!-- MATH
 ${\hat{\cal S}}$
 -->
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
be the space spanned by a collection of computed left singular
vectors 
<!-- MATH
 $\{\hat{u}_i \, , \, i \in {\cal I}\}$
 -->
<IMG
 WIDTH="89" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img663.png"
 ALT="$\{\hat{u}_i \, , \, i \in {\cal I}\}$">,
where <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
is a subset
of the integers from 1 to <B><I>n</I></B>. Let <IMG
 WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
 SRC="img318.png"
 ALT="$\cal S$">
be the corresponding true space.
Then
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon \|A\|_2}
{{\rm gap}_{\cal I}}  .
\end{displaymath}
 -->


<IMG
 WIDTH="186" HEIGHT="48" BORDER="0"
 SRC="img664.png"
 ALT="\begin{displaymath}
\theta ( {\hat{\cal S}}, {\cal S}) \mathrel{\raisebox{-.75ex...
...}\frac{p(m,n) \epsilon \Vert A\Vert _2}
{{\rm gap}_{\cal I}} .
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
| \sigma_i - \sigma_j |
\end{displaymath}
 -->


<IMG
 WIDTH="153" HEIGHT="50" BORDER="0"
 SRC="img665.png"
 ALT="\begin{displaymath}
{\rm gap}_{\cal I} = \min_{i \in {\cal I} \atop j \not\in {\cal I}}
\vert \sigma_i - \sigma_j \vert
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
is the absolute gap between the singular values in <IMG
 WIDTH="15" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="img553.png"
 ALT="$\cal I$">
and the nearest
other singular value. Thus, a cluster<A NAME="11803"></A>
of close singular values which is
far away from any other singular value may have a well determined
space 
<!-- MATH
 ${\hat{\cal S}}$
 -->
<IMG
 WIDTH="16" HEIGHT="21" ALIGN="BOTTOM" BORDER="0"
 SRC="img320.png"
 ALT="$\hat{\cal S}$">
even if its individual singular vectors are ill-conditioned.
The same bound applies to a set of right singular vectors

<!-- MATH
 $\{\hat{v}_i \, , \, i \in {\cal I}\}$
 -->
<IMG
 WIDTH="87" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img666.png"
 ALT="$\{\hat{v}_i \, , \, i \in {\cal I}\}$"><A NAME="tex2html2331"
 HREF="footnode.html#foot13254"><SUP>4.1</SUP></A>.
</BLOCKQUOTE>
<P>

<P>
In the special case of bidiagonal matrices, the singular values and
singular vectors may be computed much more accurately. A bidiagonal
matrix <B><I>B</I></B> has nonzero entries only on the main diagonal and the diagonal
immediately
above it (or immediately below it). xGESVD computes the SVD of a general
<A NAME="11811"></A><A NAME="11812"></A><A NAME="11813"></A><A NAME="11814"></A>
matrix by first reducing it to bidiagonal form <B><I>B</I></B>, and then calling xBDSQR
<A NAME="11815"></A><A NAME="11816"></A><A NAME="11817"></A><A NAME="11818"></A>
(subsection <A HREF="node53.html#subseccompsvd">2.4.6</A>)
to compute the SVD of <B><I>B</I></B>.
xGESDD is similar, but calls xBDSDC to compute the SVD of <B><I>B</I></B>.
<A NAME="11820"></A><A NAME="11821"></A>
Reduction of a dense matrix to bidiagonal form <B><I>B</I></B> can introduce
additional errors, so the following bounds for the bidiagonal case
do not apply to the dense case.

<P>
<BLOCKQUOTE>
Each computed singular value of a bidiagonal matrix
is accurate to nearly full relative accuracy<A NAME="11823"></A>,
no matter how tiny it is:
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
| \hat{\sigma}_i - \sigma_i | \leq p(m,n) \cdot \epsilon \cdot \sigma_i.
\end{displaymath}
 -->


<IMG
 WIDTH="191" HEIGHT="31" BORDER="0"
 SRC="img668.png"
 ALT="\begin{displaymath}
\vert \hat{\sigma}_i - \sigma_i \vert \leq p(m,n) \cdot \epsilon \cdot \sigma_i.
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
<A NAME="11824"></A>
<A NAME="11825"></A>
The following bounds apply only to xBDSQR.
The computed left singular vector <IMG
 WIDTH="20" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img632.png"
 ALT="$\hat{u}_i$">
has an angular error
at most about
</BLOCKQUOTE>
<BR><P></P>
<DIV ALIGN="CENTER">

<!-- MATH
 \begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\mathop{\sim}\limits^{\textstyle <}$}}\frac{p(m,n) \epsilon}{{\rm relgap}_i}
\end{displaymath}
 -->


<IMG
 WIDTH="149" HEIGHT="48" BORDER="0"
 SRC="img669.png"
 ALT="\begin{displaymath}
\theta ( \hat{u}_i , u_i ) \mathrel{\raisebox{-.75ex}{$\math...
...limits^{\textstyle &lt;}$}}\frac{p(m,n) \epsilon}{{\rm relgap}_i}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P><BLOCKQUOTE>
where

<!-- MATH
 ${\rm relgap}_i = \min_{j \neq i} | \sigma_i - \sigma_j | / ( \sigma_i + \sigma_j )$
 -->
<IMG
 WIDTH="273" HEIGHT="34" ALIGN="MIDDLE" BORDER="0"
 SRC="img670.png"
 ALT="${\rm relgap}_i = \min_{j \neq i} \vert \sigma_i - \sigma_j \vert / ( \sigma_i + \sigma_j )$">
is the <B>relative gap</B> between <IMG
 WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="img36.png"
 ALT="$\sigma _ i $">
and the nearest other singular
value. The same bound applies to the right singular vector <IMG
 WIDTH="18" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="img564.png"
 ALT="$\hat{v}_i$">
and <B><I>v</I><SUB><I>i</I></SUB></B>.
Since the relative gap<A NAME="11830"></A><A NAME="11831"></A> may be much larger than
the absolute gap<A NAME="11832"></A><A NAME="11833"></A>,
this error bound may be much smaller than the previous one. The relative gaps
may be easily computed from the array of computed singular values.

</BLOCKQUOTE>

<P>
In the very special case of 2-by-2 bidiagonal matrices, xBDSQR and xBDSDC
call auxiliary routine xLASV2 to compute the SVD. xLASV2 will
actually compute nearly correctly rounded singular vectors independent of
the relative gap, but this requires accurate computer arithmetic:
if leading digits cancel during floating-point subtraction, the resulting
difference must be exact.
On machines without guard digits one has the slightly weaker result that the
algorithm is componentwise relatively backward stable, and therefore the
accuracy <A NAME="11835"></A> of the singular vectors depends on the relative gap as described
above.
<A NAME="11836"></A>
<A NAME="11837"></A>

<P>
Jacobi's method [<A
 HREF="node151.html#demmelveselic">34</A>,<A
 HREF="node151.html#veselicslapnicar">99</A>,<A
 HREF="node151.html#slapnicar1">91</A>] is another
algorithm for finding singular values and singular vectors of matrices.
It is slower than the algorithms based on first bidiagonalizing the matrix,
but is capable of computing more accurate answers in several important cases.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5550"
 HREF="node98.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="next_motif.png"></A> 
<A NAME="tex2html5544"
 HREF="node96.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="up_motif.png"></A> 
<A NAME="tex2html5540"
 HREF="node96.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="previous_motif.png"></A> 
<A NAME="tex2html5546"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="contents_motif.png"></A> 
<A NAME="tex2html5548"
 HREF="node152.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index"
 SRC="index_motif.png"></A> 
<BR>
<B> Next:</B> <A NAME="tex2html5551"
 HREF="node98.html">Error Bounds for the</A>
<B> Up:</B> <A NAME="tex2html5545"
 HREF="node96.html">Error Bounds for the</A>
<B> Previous:</B> <A NAME="tex2html5541"
 HREF="node96.html">Error Bounds for the</A>
 &nbsp <B>  <A NAME="tex2html5547"
 HREF="node1.html">Contents</A></B> 
 &nbsp <B>  <A NAME="tex2html5549"
 HREF="node152.html">Index</A></B> 
<!--End of Navigation Panel-->
<ADDRESS>
<I>Susan Blackford</I>
<BR><I>1999-10-01</I>
</ADDRESS>
</BODY>
</HTML>