File: cgerq2.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (67 lines) | stat: -rwxr-xr-x 1,779 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
.TH CGERQ2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CGERQ2 - compute an RQ factorization of a complex m by n matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE CGERQ2(
M, N, A, LDA, TAU, WORK, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDA, M, N
.TP 19
.ti +4
COMPLEX
A( LDA, * ), TAU( * ), WORK( * )
.SH PURPOSE
CGERQ2 computes an RQ factorization of a complex m by n matrix A: A = R * Q.
.br

.SH ARGUMENTS
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A.  N >= 0.
.TP 8
A       (input/output) COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).
.TP 8
TAU     (output) COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
.TP 8
WORK    (workspace) COMPLEX array, dimension (M)
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors

   Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).
.br

Each H(i) has the form
.br

   H(i) = I - tau * v * v'
.br

where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
.br