File: cgetc2.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (63 lines) | stat: -rwxr-xr-x 1,816 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
.TH CGETC2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CGETC2 - compute an LU factorization, using complete pivoting, of the n-by-n matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE CGETC2(
N, A, LDA, IPIV, JPIV, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
INTEGER
IPIV( * ), JPIV( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * )
.SH PURPOSE
CGETC2 computes an LU factorization, using complete pivoting, of the n-by-n matrix A. The factorization has the form A = P * L * U * Q, where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
.br

This is a level 1 BLAS version of the algorithm.
.br

.SH ARGUMENTS
.TP 8
N       (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
A       (input/output) COMPLEX array, dimension (LDA, N)
On entry, the n-by-n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, giving a nonsingular perturbed system.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1, N).
.TP 8
IPIV    (output) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
.TP 8
JPIV    (output) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
> 0: if INFO = k, U(k, k) is likely to produce overflow if
one tries to solve for x in Ax = b. So U is perturbed
to avoid the overflow.
.SH FURTHER DETAILS
Based on contributions by
.br
   Bo Kagstrom and Peter Poromaa, Department of Computing Science,
   Umea University, S-901 87 Umea, Sweden.
.br