1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
.TH CGETF2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CGETF2 - compute an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges
.SH SYNOPSIS
.TP 19
SUBROUTINE CGETF2(
M, N, A, LDA, IPIV, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDA, M, N
.TP 19
.ti +4
INTEGER
IPIV( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * )
.SH PURPOSE
CGETF2 computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges.
The factorization has the form
.br
A = P * L * U
.br
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
.br
This is the right-looking Level 2 BLAS version of the algorithm.
.SH ARGUMENTS
.TP 8
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
.TP 8
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
.TP 8
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
IPIV (output) INTEGER array, dimension (min(M,N))
The pivot indices; for 1 <= i <= min(M,N), row i of the
matrix was interchanged with row IPIV(i).
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -k, the k-th argument had an illegal value
.br
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
|