1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
.TH CHBGV l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CHBGV - compute all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
.SH SYNOPSIS
.TP 18
SUBROUTINE CHBGV(
JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
LDZ, WORK, RWORK, INFO )
.TP 18
.ti +4
CHARACTER
JOBZ, UPLO
.TP 18
.ti +4
INTEGER
INFO, KA, KB, LDAB, LDBB, LDZ, N
.TP 18
.ti +4
REAL
RWORK( * ), W( * )
.TP 18
.ti +4
COMPLEX
AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
Z( LDZ, * )
.SH PURPOSE
CHBGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite.
.br
.SH ARGUMENTS
.TP 8
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
.br
= 'V': Compute eigenvalues and eigenvectors.
.TP 8
UPLO (input) CHARACTER*1
.br
= 'U': Upper triangles of A and B are stored;
.br
= 'L': Lower triangles of A and B are stored.
.TP 8
N (input) INTEGER
The order of the matrices A and B. N >= 0.
.TP 8
KA (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
.TP 8
KB (input) INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KB >= 0.
.TP 8
AB (input/output) COMPLEX array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the contents of AB are destroyed.
.TP 8
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
.TP 8
BB (input/output) COMPLEX array, dimension (LDBB, N)
On entry, the upper or lower triangle of the Hermitian band
matrix B, stored in the first kb+1 rows of the array. The
j-th column of B is stored in the j-th column of the array BB
as follows:
if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
On exit, the factor S from the split Cholesky factorization
B = S**H*S, as returned by CPBSTF.
.TP 8
LDBB (input) INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
.TP 8
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
.TP 8
Z (output) COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors, with the i-th column of Z holding the
eigenvector associated with W(i). The eigenvectors are
normalized so that Z**H*B*Z = I.
If JOBZ = 'N', then Z is not referenced.
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= N.
.TP 8
WORK (workspace) COMPLEX array, dimension (N)
.TP 8
RWORK (workspace) REAL array, dimension (3*N)
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, and i is:
.br
<= N: the algorithm failed to converge:
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
.br
returned INFO = i: B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
|