File: chpgvx.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (186 lines) | stat: -rwxr-xr-x 6,066 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
.TH CHPGVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CHPGVX - compute selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
.SH SYNOPSIS
.TP 19
SUBROUTINE CHPGVX(
ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
IWORK, IFAIL, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, RANGE, UPLO
.TP 19
.ti +4
INTEGER
IL, INFO, ITYPE, IU, LDZ, M, N
.TP 19
.ti +4
REAL
ABSTOL, VL, VU
.TP 19
.ti +4
INTEGER
IFAIL( * ), IWORK( * )
.TP 19
.ti +4
REAL
RWORK( * ), W( * )
.TP 19
.ti +4
COMPLEX
AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
CHPGVX computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian, stored in packed format, and B is also
positive definite.  Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the
desired eigenvalues.
.br

.SH ARGUMENTS
.TP 8
ITYPE   (input) INTEGER
Specifies the problem type to be solved:
.br
= 1:  A*x = (lambda)*B*x
.br
= 2:  A*B*x = (lambda)*x
.br
= 3:  B*A*x = (lambda)*x
.TP 8
JOBZ    (input) CHARACTER*1
.br
= 'N':  Compute eigenvalues only;
.br
= 'V':  Compute eigenvalues and eigenvectors.
.TP 8
RANGE   (input) CHARACTER*1
.br
= 'A': all eigenvalues will be found;
.br
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
.TP 8
UPLO    (input) CHARACTER*1
.br
= 'U':  Upper triangles of A and B are stored;
.br
= 'L':  Lower triangles of A and B are stored.
.TP 8
N       (input) INTEGER
The order of the matrices A and B.  N >= 0.
.TP 8
AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

On exit, the contents of AP are destroyed.
.TP 8
BP      (input/output) COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array.  The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
.TP 8
VL      (input) REAL
VU      (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
.TP 8
IL      (input) INTEGER
IU      (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
.TP 8
ABSTOL  (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to

ABSTOL + EPS *   max( |a|,|b| ) ,

where EPS is the machine precision.  If ABSTOL is less than
or equal to zero, then  EPS*|T|  will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.

Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
.TP 8
M       (output) INTEGER
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
.TP 8
W       (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
.TP 8
Z       (output) COMPLEX array, dimension (LDZ, N)
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.

If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
.TP 8
LDZ     (input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK    (workspace) COMPLEX array, dimension (2*N)
.TP 8
RWORK   (workspace) REAL array, dimension (7*N)
.TP 8
IWORK   (workspace) INTEGER array, dimension (5*N)
.TP 8
IFAIL   (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero.  If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  CPPTRF or CHPEVX returned an error code:
.br
<= N:  if INFO = i, CHPEVX failed to converge;
i eigenvectors failed to converge.  Their indices
are stored in array IFAIL.
> N:   if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
.SH FURTHER DETAILS
Based on contributions by
.br
   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA