File: claqp2.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (75 lines) | stat: -rwxr-xr-x 2,192 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
.TH CLAQP2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CLAQP2 - compute a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
.SH SYNOPSIS
.TP 19
SUBROUTINE CLAQP2(
M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
WORK )
.TP 19
.ti +4
INTEGER
LDA, M, N, OFFSET
.TP 19
.ti +4
INTEGER
JPVT( * )
.TP 19
.ti +4
REAL
VN1( * ), VN2( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * ), TAU( * ), WORK( * )
.SH PURPOSE
CLAQP2 computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

.SH ARGUMENTS
.TP 8
M       (input) INTEGER
The number of rows of the matrix A. M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A. N >= 0.
.TP 8
OFFSET  (input) INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
.TP 8
A       (input/output) COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is 
the triangular factor obtained; the elements in block 
A(OFFSET+1:M,1:N) below the diagonal, together with the 
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been 
accordingly pivoted, but no factorized.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
JPVT    (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
.TP 8
TAU     (output) COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
.TP 8
VN1     (input/output) REAL array, dimension (N)
The vector with the partial column norms.
.TP 8
VN2     (input/output) REAL array, dimension (N)
The vector with the exact column norms.
.TP 8
WORK    (workspace) COMPLEX array, dimension (N)
.SH FURTHER DETAILS
Based on contributions by
.br
  G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  X. Sun, Computer Science Dept., Duke University, USA
.br