File: clar2v.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (55 lines) | stat: -rwxr-xr-x 1,587 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
.TH CLAR2V l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CLAR2V - applie a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices,
.SH SYNOPSIS
.TP 19
SUBROUTINE CLAR2V(
N, X, Y, Z, INCX, C, S, INCC )
.TP 19
.ti +4
INTEGER
INCC, INCX, N
.TP 19
.ti +4
REAL
C( * )
.TP 19
.ti +4
COMPLEX
S( * ), X( * ), Y( * ), Z( * )
.SH PURPOSE
CLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n

   (       x(i)  z(i) ) :=
.br
   ( conjg(z(i)) y(i) )
.br

     (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
     ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )

.SH ARGUMENTS
.TP 8
N       (input) INTEGER
The number of plane rotations to be applied.
.TP 8
X       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
The vector x; the elements of x are assumed to be real.
.TP 8
Y       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
The vector y; the elements of y are assumed to be real.
.TP 8
Z       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
The vector z.
.TP 8
INCX    (input) INTEGER
The increment between elements of X, Y and Z. INCX > 0.
.TP 8
C       (input) REAL array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
.TP 8
S       (input) COMPLEX array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.
.TP 8
INCC    (input) INTEGER
The increment between elements of C and S. INCC > 0.