File: clarzt.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (137 lines) | stat: -rwxr-xr-x 3,887 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
.TH CLARZT l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CLARZT - form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors
.SH SYNOPSIS
.TP 19
SUBROUTINE CLARZT(
DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
.TP 19
.ti +4
CHARACTER
DIRECT, STOREV
.TP 19
.ti +4
INTEGER
K, LDT, LDV, N
.TP 19
.ti +4
COMPLEX
T( LDT, * ), TAU( * ), V( LDV, * )
.SH PURPOSE
CLARZT forms the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors. 
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
.br

   H  =  I - V * T * V'
.br

If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
.br

   H  =  I - V' * T * V
.br

Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

.SH ARGUMENTS
.TP 8
DIRECT  (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
.br
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
.br
= 'B': H = H(k) . . . H(2) H(1) (Backward)
.TP 8
STOREV  (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
.br
= 'R': rowwise
.TP 8
N       (input) INTEGER
The order of the block reflector H. N >= 0.
.TP 8
K       (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
.TP 8
V       (input/output) COMPLEX array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
.TP 8
LDV     (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
.TP 8
TAU     (input) COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
.TP 8
T       (output) COMPLEX array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
.TP 8
LDT     (input) INTEGER
The leading dimension of the array T. LDT >= K.
.SH FURTHER DETAILS
Based on contributions by
.br
  A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
.br

DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

                                            ______V_____
.br
       ( v1 v2 v3 )                        /            \
       ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
   V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
       ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
       ( v1 v2 v3 )
.br
          .  .  .
.br
          .  .  .
.br
          1  .  .
.br
             1  .
.br
                1
.br

DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

                                                      ______V_____
          1                                          /            \
          .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
          .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
          .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
          .  .  .
.br
       ( v1 v2 v3 )
.br
       ( v1 v2 v3 )
.br
   V = ( v1 v2 v3 )
.br
       ( v1 v2 v3 )
.br
       ( v1 v2 v3 )
.br