File: clauum.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (57 lines) | stat: -rwxr-xr-x 1,596 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
.TH CLAUUM l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CLAUUM - compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A
.SH SYNOPSIS
.TP 19
SUBROUTINE CLAUUM(
UPLO, N, A, LDA, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
COMPLEX
A( LDA, * )
.SH PURPOSE
CLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A. 
If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
overwriting the factor U in A.
.br
If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
overwriting the factor L in A.
.br

This is the blocked form of the algorithm, calling Level 3 BLAS.

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
.br
= 'U':  Upper triangular
.br
= 'L':  Lower triangular
.TP 8
N       (input) INTEGER
The order of the triangular factor U or L.  N >= 0.
.TP 8
A       (input/output) COMPLEX array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = 'U', the upper triangle of A is
overwritten with the upper triangle of the product U * U';
if UPLO = 'L', the lower triangle of A is overwritten with
the lower triangle of the product L' * L.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -k, the k-th argument had an illegal value