File: cpbstf.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (115 lines) | stat: -rwxr-xr-x 3,104 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
.TH CPBSTF l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CPBSTF - compute a split Cholesky factorization of a complex Hermitian positive definite band matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE CPBSTF(
UPLO, N, KD, AB, LDAB, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, KD, LDAB, N
.TP 19
.ti +4
COMPLEX
AB( LDAB, * )
.SH PURPOSE
CPBSTF computes a split Cholesky factorization of a complex Hermitian positive definite band matrix A. 
This routine is designed to be used in conjunction with CHBGST.

The factorization has the form  A = S**H*S  where S is a band matrix
of the same bandwidth as A and the following structure:
.br

  S = ( U    )
.br
      ( M  L )
.br

where U is upper triangular of order m = (n+kd)/2, and L is lower
triangular of order n-m.
.br

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
KD      (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
.TP 8
AB      (input/output) COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first kd+1 rows of the array.  The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

On exit, if INFO = 0, the factor S from the split Cholesky
factorization A = S**H*S. See Further Details.
LDAB    (input) INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, the factorization could not be completed,
because the updated element a(i,i) was negative; the
matrix A is not positive definite.
.SH FURTHER DETAILS
The band storage scheme is illustrated by the following example, when
N = 7, KD = 2:
.br

S = ( s11  s12  s13                     )
.br
    (      s22  s23  s24                )
.br
    (           s33  s34                )
.br
    (                s44                )
.br
    (           s53  s54  s55           )
.br
    (                s64  s65  s66      )
.br
    (                     s75  s76  s77 )
.br

If UPLO = 'U', the array AB holds:
.br

on entry:                          on exit:
.br

 *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53' s64' s75'
 *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54' s65' s76'
a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77

If UPLO = 'L', the array AB holds:
.br

on entry:                          on exit:
.br

a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
a21  a32  a43  a54  a65  a76   *   s12' s23' s34' s54  s65  s76   *
a31  a42  a53  a64  a64   *    *   s13' s24' s53  s64  s75   *    *

Array elements marked * are not used by the routine; s12' denotes
conjg(s12); the diagonal elements of S are real.
.br