1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
.TH CPBSVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CPBSVX - use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
.SH SYNOPSIS
.TP 19
SUBROUTINE CPBSVX(
FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
WORK, RWORK, INFO )
.TP 19
.ti +4
CHARACTER
EQUED, FACT, UPLO
.TP 19
.ti +4
INTEGER
INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
.TP 19
.ti +4
REAL
RCOND
.TP 19
.ti +4
REAL
BERR( * ), FERR( * ), RWORK( * ), S( * )
.TP 19
.ti +4
COMPLEX
AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
WORK( * ), X( LDX, * )
.SH PURPOSE
CPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian positive definite band matrix and X
and B are N-by-NRHS matrices.
.br
Error bounds on the solution and a condition estimate are also
provided.
.br
.SH DESCRIPTION
The following steps are performed:
.br
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
.br
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
.br
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**H * U, if UPLO = 'U', or
.br
A = L * L**H, if UPLO = 'L',
.br
where U is an upper triangular band matrix, and L is a lower
triangular band matrix.
.br
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
.br
4. The system of equations is solved for X using the factored form
of A.
.br
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
.br
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
.br
equilibration.
.br
.SH ARGUMENTS
.TP 8
FACT (input) CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
.br
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
.TP 8
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
.br
= 'L': Lower triangle of A is stored.
.TP 8
N (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
.TP 8
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
.TP 8
NRHS (input) INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
.TP 8
AB (input/output) COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
.TP 8
LDAB (input) INTEGER
The leading dimension of the array A. LDAB >= KD+1.
.TP 8
AFB (input or output) COMPLEX array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
.TP 8
LDAFB (input) INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
.TP 8
EQUED (input or output) CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
.br
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
.TP 8
S (input or output) REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
.TP 8
B (input/output) COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
X (output) COMPLEX array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
.TP 8
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
.TP 8
RCOND (output) REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
.TP 8
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
.TP 8
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
.TP 8
WORK (workspace) COMPLEX array, dimension (2*N)
.TP 8
RWORK (workspace) REAL array, dimension (N)
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, and i is
.br
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
.SH FURTHER DETAILS
The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':
.br
Two-dimensional storage of the Hermitian matrix A:
.br
a11 a12 a13
.br
a22 a23 a24
.br
a33 a34 a35
.br
a44 a45 a46
.br
a55 a56
.br
(aij=conjg(aji)) a66
.br
Band storage of the upper triangle of A:
.br
* * a13 a24 a35 a46
.br
* a12 a23 a34 a45 a56
.br
a11 a22 a33 a44 a55 a66
.br
Similarly, if UPLO = 'L' the format of A is as follows:
.br
a11 a22 a33 a44 a55 a66
.br
a21 a32 a43 a54 a65 *
.br
a31 a42 a53 a64 * *
.br
Array elements marked * are not used by the routine.
.br
|