1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
.TH CROT l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CROT - applie a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex
.SH SYNOPSIS
.TP 17
SUBROUTINE CROT(
N, CX, INCX, CY, INCY, C, S )
.TP 17
.ti +4
INTEGER
INCX, INCY, N
.TP 17
.ti +4
REAL
C
.TP 17
.ti +4
COMPLEX
S
.TP 17
.ti +4
COMPLEX
CX( * ), CY( * )
.SH PURPOSE
CROT applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex.
.SH ARGUMENTS
.TP 8
N (input) INTEGER
The number of elements in the vectors CX and CY.
.TP 8
CX (input/output) COMPLEX array, dimension (N)
On input, the vector X.
On output, CX is overwritten with C*X + S*Y.
.TP 8
INCX (input) INTEGER
The increment between successive values of CY. INCX <> 0.
.TP 8
CY (input/output) COMPLEX array, dimension (N)
On input, the vector Y.
On output, CY is overwritten with -CONJG(S)*X + C*Y.
.TP 8
INCY (input) INTEGER
The increment between successive values of CY. INCX <> 0.
.TP 8
C (input) REAL
S (input) COMPLEX
C and S define a rotation
[ C S ]
[ -conjg(S) C ]
where C*C + S*CONJG(S) = 1.0.
|