1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
.TH CTGEVC l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTGEVC - compute some or all of the right and/or left generalized eigenvectors of a pair of complex upper triangular matrices (A,B)
.SH SYNOPSIS
.TP 19
SUBROUTINE CTGEVC(
SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
.TP 19
.ti +4
CHARACTER
HOWMNY, SIDE
.TP 19
.ti +4
INTEGER
INFO, LDA, LDB, LDVL, LDVR, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
REAL
RWORK( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
VR( LDVR, * ), WORK( * )
.SH PURPOSE
CTGEVC computes some or all of the right and/or left generalized eigenvectors of a pair of complex upper triangular matrices (A,B).
The right generalized eigenvector x and the left generalized
eigenvector y of (A,B) corresponding to a generalized eigenvalue
w are defined by:
.br
(A - wB) * x = 0 and y**H * (A - wB) = 0
.br
where y**H denotes the conjugate tranpose of y.
.br
If an eigenvalue w is determined by zero diagonal elements of both A
and B, a unit vector is returned as the corresponding eigenvector.
If all eigenvectors are requested, the routine may either return
the matrices X and/or Y of right or left eigenvectors of (A,B), or
the products Z*X and/or Q*Y, where Z and Q are input unitary
matrices. If (A,B) was obtained from the generalized Schur
factorization of an original pair of matrices
.br
(A0,B0) = (Q*A*Z**H,Q*B*Z**H),
.br
then Z*X and Q*Y are the matrices of right or left eigenvectors of
A.
.br
.SH ARGUMENTS
.TP 8
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
.br
= 'L': compute left eigenvectors only;
.br
= 'B': compute both right and left eigenvectors.
.TP 8
HOWMNY (input) CHARACTER*1
.br
= 'A': compute all right and/or left eigenvectors;
.br
= 'B': compute all right and/or left eigenvectors, and
backtransform them using the input matrices supplied
in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
.TP 8
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed.
If HOWMNY='A' or 'B', SELECT is not referenced.
To select the eigenvector corresponding to the j-th
eigenvalue, SELECT(j) must be set to .TRUE..
.TP 8
N (input) INTEGER
The order of the matrices A and B. N >= 0.
.TP 8
A (input) COMPLEX array, dimension (LDA,N)
The upper triangular matrix A.
.TP 8
LDA (input) INTEGER
The leading dimension of array A. LDA >= max(1,N).
.TP 8
B (input) COMPLEX array, dimension (LDB,N)
The upper triangular matrix B. B must have real diagonal
elements.
.TP 8
LDB (input) INTEGER
The leading dimension of array B. LDB >= max(1,N).
.TP 8
VL (input/output) COMPLEX array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the unitary matrix Q
of left Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (A,B);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (A,B) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
If SIDE = 'R', VL is not referenced.
.TP 8
LDVL (input) INTEGER
The leading dimension of array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
.TP 8
VR (input/output) COMPLEX array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the unitary matrix Z
of right Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (A,B);
if HOWMNY = 'B', the matrix Z*X;
if HOWMNY = 'S', the right eigenvectors of (A,B) specified by
SELECT, stored consecutively in the columns of
VR, in the same order as their eigenvalues.
If SIDE = 'L', VR is not referenced.
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
.TP 8
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
.TP 8
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected eigenvector occupies one column.
.TP 8
WORK (workspace) COMPLEX array, dimension (2*N)
.TP 8
RWORK (workspace) REAL array, dimension (2*N)
.TP 8
INFO (output) INTEGER
= 0: successful exit.
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
|