1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
.TH CTGEXC l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTGEXC - reorder the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is moved to row ILST
.SH SYNOPSIS
.TP 19
SUBROUTINE CTGEXC(
WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, IFST, ILST, INFO )
.TP 19
.ti +4
LOGICAL
WANTQ, WANTZ
.TP 19
.ti +4
INTEGER
IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
.TP 19
.ti +4
COMPLEX
A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
Z( LDZ, * )
.SH PURPOSE
CTGEXC reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is moved to row ILST.
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
.br
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
.br
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
.SH ARGUMENTS
.TP 8
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.br
.FALSE.: do not update Q.
.TP 8
WANTZ (input) LOGICAL
.br
.TRUE. : update the right transformation matrix Z;
.br
.FALSE.: do not update Z.
.TP 8
N (input) INTEGER
The order of the matrices A and B. N >= 0.
.TP 8
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the upper triangular matrix A in the pair (A, B).
On exit, the updated matrix A.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
B (input/output) COMPLEX array, dimension (LDB,N)
On entry, the upper triangular matrix B in the pair (A, B).
On exit, the updated matrix B.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
Q (input/output) COMPLEX array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the unitary matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
.TP 8
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1;
If WANTQ = .TRUE., LDQ >= N.
.TP 8
Z (input/output) COMPLEX array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the unitary matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
.TP 8
IFST (input/output) INTEGER
ILST (input/output) INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
.TP 8
INFO (output) INTEGER
=0: Successful exit.
.br
<0: if INFO = -i, the i-th argument had an illegal value.
.br
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
.SH FURTHER DETAILS
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software, Report
.br
UMINF - 94.04, Department of Computing Science, Umea University,
S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
To appear in Numerical Algorithms, 1996.
.br
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.
.br
|