1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
.TH CTGSJA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTGSJA - compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) matrices A and B
.SH SYNOPSIS
.TP 19
SUBROUTINE CTGSJA(
JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
Q, LDQ, WORK, NCYCLE, INFO )
.TP 19
.ti +4
CHARACTER
JOBQ, JOBU, JOBV
.TP 19
.ti +4
INTEGER
INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
NCYCLE, P
.TP 19
.ti +4
REAL
TOLA, TOLB
.TP 19
.ti +4
REAL
ALPHA( * ), BETA( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
U( LDU, * ), V( LDV, * ), WORK( * )
.SH PURPOSE
CTGSJA computes the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine CGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
.br
N-K-L K L
.br
A = K ( 0 A12 A13 ) if M-K-L >= 0;
.br
L ( 0 0 A23 )
.br
M-K-L ( 0 0 0 )
.br
N-K-L K L
.br
A = K ( 0 A12 A13 ) if M-K-L < 0;
.br
M-K ( 0 0 A23 )
.br
N-K-L K L
.br
B = L ( 0 0 B13 )
.br
P-L ( 0 0 0 )
.br
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
.br
On exit,
.br
U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
.br
where U, V and Q are unitary matrices, Z' denotes the conjugate
transpose of Z, R is a nonsingular upper triangular matrix, and D1
and D2 are ``diagonal'' matrices, which are of the following
structures:
.br
If M-K-L >= 0,
.br
K L
.br
D1 = K ( I 0 )
.br
L ( 0 C )
.br
M-K-L ( 0 0 )
.br
K L
.br
D2 = L ( 0 S )
.br
P-L ( 0 0 )
.br
N-K-L K L
.br
( 0 R ) = K ( 0 R11 R12 ) K
.br
L ( 0 0 R22 ) L
.br
where
.br
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
.br
S = diag( BETA(K+1), ... , BETA(K+L) ),
.br
C**2 + S**2 = I.
.br
R is stored in A(1:K+L,N-K-L+1:N) on exit.
.br
If M-K-L < 0,
.br
K M-K K+L-M
.br
D1 = K ( I 0 0 )
.br
M-K ( 0 C 0 )
.br
K M-K K+L-M
.br
D2 = M-K ( 0 S 0 )
.br
K+L-M ( 0 0 I )
.br
P-L ( 0 0 0 )
.br
N-K-L K M-K K+L-M
.br
M-K ( 0 0 R22 R23 )
.br
K+L-M ( 0 0 0 R33 )
.br
where
.br
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
.br
S = diag( BETA(K+1), ... , BETA(M) ),
.br
C**2 + S**2 = I.
.br
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
.br
in B(M-K+1:L,N+M-K-L+1:N) on exit.
.br
The computation of the unitary transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
.br
.SH ARGUMENTS
.TP 8
JOBU (input) CHARACTER*1
= 'U': U must contain a unitary matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
unitary matrix U is returned;
= 'N': U is not computed.
.TP 8
JOBV (input) CHARACTER*1
.br
= 'V': V must contain a unitary matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
unitary matrix V is returned;
= 'N': V is not computed.
.TP 8
JOBQ (input) CHARACTER*1
.br
= 'Q': Q must contain a unitary matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
unitary matrix Q is returned;
= 'N': Q is not computed.
.TP 8
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
.TP 8
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
.TP 8
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
.TP 8
K (input) INTEGER
L (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
.br
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
of A and B, whose GSVD is going to be computed by CTGSJA.
See Further details.
.TP 8
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B (input/output) COMPLEX array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
.TP 8
TOLA (input) REAL
TOLB (input) REAL
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
.TP 8
ALPHA (output) REAL array, dimension (N)
BETA (output) REAL array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
.br
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
.br
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
.br
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0
.br
BETA(K+L+1:N) = 0.
.TP 8
U (input/output) COMPLEX array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the unitary matrix returned by CGGSVP).
On exit,
if JOBU = 'I', U contains the unitary matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
.TP 8
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
.TP 8
V (input/output) COMPLEX array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the unitary matrix returned by CGGSVP).
On exit,
if JOBV = 'I', V contains the unitary matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
.TP 8
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
.TP 8
Q (input/output) COMPLEX array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the unitary matrix returned by CGGSVP).
On exit,
if JOBQ = 'I', Q contains the unitary matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
.TP 8
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
.TP 8
WORK (workspace) COMPLEX array, dimension (2*N)
.TP 8
NCYCLE (output) INTEGER
The number of cycles required for convergence.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.br
= 1: the procedure does not converge after MAXIT cycles.
.SH PARAMETERS
.TP 8
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.
Further Details
===============
CTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
where U1, V1 and Q1 are unitary matrix, and Z' is the conjugate
transpose of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.
|