1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
.TH CTGSNA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTGSNA - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B)
.SH SYNOPSIS
.TP 19
SUBROUTINE CTGSNA(
JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
IWORK, INFO )
.TP 19
.ti +4
CHARACTER
HOWMNY, JOB
.TP 19
.ti +4
INTEGER
INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
DIF( * ), S( * )
.TP 19
.ti +4
COMPLEX
A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
VR( LDVR, * ), WORK( * )
.SH PURPOSE
CTGSNA estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B).
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
.br
.SH ARGUMENTS
.TP 8
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
.br
= 'E': for eigenvalues only (S);
.br
= 'V': for eigenvectors only (DIF);
.br
= 'B': for both eigenvalues and eigenvectors (S and DIF).
.TP 8
HOWMNY (input) CHARACTER*1
.br
= 'A': compute condition numbers for all eigenpairs;
.br
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
.TP 8
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the corresponding j-th eigenvalue and/or eigenvector,
SELECT(j) must be set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
.TP 8
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
.TP 8
A (input) COMPLEX array, dimension (LDA,N)
The upper triangular matrix A in the pair (A,B).
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
B (input) COMPLEX array, dimension (LDB,N)
The upper triangular matrix B in the pair (A, B).
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
VL (input) COMPLEX array, dimension (LDVL,M)
IF JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by CTGEVC.
If JOB = 'V', VL is not referenced.
.TP 8
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; and
If JOB = 'E' or 'B', LDVL >= N.
.TP 8
VR (input) COMPLEX array, dimension (LDVR,M)
IF JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VR, as returned by CTGEVC.
If JOB = 'V', VR is not referenced.
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1;
If JOB = 'E' or 'B', LDVR >= N.
.TP 8
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array.
If JOB = 'V', S is not referenced.
.TP 8
DIF (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array.
If the eigenvalues cannot be reordered to compute DIF(j),
DIF(j) is set to 0; this can only occur when the true value
would be very small anyway.
For each eigenvalue/vector specified by SELECT, DIF stores
a Frobenius norm-based estimate of Difl.
If JOB = 'E', DIF is not referenced.
.TP 8
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
.TP 8
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected eigenvalue
one element is used. If HOWMNY = 'A', M is set to N.
.TP 8
WORK (workspace/output) COMPLEX array, dimension (LWORK)
If JOB = 'E', WORK is not referenced. Otherwise,
on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 7
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOB = 'V' or 'B', LWORK >= 2*N*N.
.TP 8
IWORK (workspace) INTEGER array, dimension (N+2)
If JOB = 'E', IWORK is not referenced.
.TP 8
INFO (output) INTEGER
= 0: Successful exit
.br
< 0: If INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The reciprocal of the condition number of the i-th generalized
eigenvalue w = (a, b) is defined as
.br
S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u. The pair
(a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the
matrix pair (A, B). If both a and b equal zero, then (A,B) is
singular and S(I) = -1 is returned.
.br
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
.br
chord(w, lambda) <= EPS * norm(A, B) / S(I),
.br
where EPS is the machine precision.
.br
The reciprocal of the condition number of the right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows. Suppose
.br
(A, B) = ( a * ) ( b * ) 1
.br
( 0 A22 ),( 0 B22 ) n-1
.br
1 n-1 1 n-1
.br
Then the reciprocal condition number DIF(I) is
.br
Difl[(a, b), (A22, B22)] = sigma-min( Zl )
.br
where sigma-min(Zl) denotes the smallest singular value of
Zl = [ kron(a, In-1) -kron(1, A22) ]
.br
[ kron(b, In-1) -kron(1, B22) ].
.br
Here In-1 is the identity matrix of size n-1 and X' is the conjugate
transpose of X. kron(X, Y) is the Kronecker product between the
matrices X and Y.
.br
We approximate the smallest singular value of Zl with an upper
bound. This is done by CLATDF.
.br
An approximate error bound for a computed eigenvector VL(i) or
VR(i) is given by
.br
EPS * norm(A, B) / DIF(i).
.br
See ref. [2-3] for more details and further references.
.br
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br
References
.br
==========
.br
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software, Report
.br
UMINF - 94.04, Department of Computing Science, Umea University,
S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
To appear in Numerical Algorithms, 1996.
.br
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75.
.br
To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
|