File: ctpcon.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (83 lines) | stat: -rwxr-xr-x 2,016 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
.TH CTPCON l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTPCON - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm
.SH SYNOPSIS
.TP 19
SUBROUTINE CTPCON(
NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
INFO )
.TP 19
.ti +4
CHARACTER
DIAG, NORM, UPLO
.TP 19
.ti +4
INTEGER
INFO, N
.TP 19
.ti +4
REAL
RCOND
.TP 19
.ti +4
REAL
RWORK( * )
.TP 19
.ti +4
COMPLEX
AP( * ), WORK( * )
.SH PURPOSE
CTPCON estimates the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm. 
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
.br
   RCOND = 1 / ( norm(A) * norm(inv(A)) ).
.br

.SH ARGUMENTS
.TP 8
NORM    (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
.br
= '1' or 'O':  1-norm;
.br
= 'I':         Infinity-norm.
.TP 8
UPLO    (input) CHARACTER*1
.br
= 'U':  A is upper triangular;
.br
= 'L':  A is lower triangular.
.TP 8
DIAG    (input) CHARACTER*1
.br
= 'N':  A is non-unit triangular;
.br
= 'U':  A is unit triangular.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
AP      (input) COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array.  The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
.TP 8
RCOND   (output) REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
.TP 8
WORK    (workspace) COMPLEX array, dimension (2*N)
.TP 8
RWORK   (workspace) REAL array, dimension (N)
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value