File: ctprfs.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (104 lines) | stat: -rwxr-xr-x 3,190 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
.TH CTPRFS l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTPRFS - provide error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix
.SH SYNOPSIS
.TP 19
SUBROUTINE CTPRFS(
UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
FERR, BERR, WORK, RWORK, INFO )
.TP 19
.ti +4
CHARACTER
DIAG, TRANS, UPLO
.TP 19
.ti +4
INTEGER
INFO, LDB, LDX, N, NRHS
.TP 19
.ti +4
REAL
BERR( * ), FERR( * ), RWORK( * )
.TP 19
.ti +4
COMPLEX
AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
.SH PURPOSE
CTPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. 
The solution matrix X must be computed by CTPTRS or some other
means before entering this routine.  CTPRFS does not do iterative
refinement because doing so cannot improve the backward error.

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  A is upper triangular;
.br
= 'L':  A is lower triangular.
.TP 8
TRANS   (input) CHARACTER*1
.br
Specifies the form of the system of equations:
.br
= 'N':  A * X = B     (No transpose)
.br
= 'T':  A**T * X = B  (Transpose)
.br
= 'C':  A**H * X = B  (Conjugate transpose)
.TP 8
DIAG    (input) CHARACTER*1
.br
= 'N':  A is non-unit triangular;
.br
= 'U':  A is unit triangular.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X.  NRHS >= 0.
.TP 8
AP      (input) COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array.  The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
.TP 8
B       (input) COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B. 
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
.TP 8
X       (input) COMPLEX array, dimension (LDX,NRHS)
The solution matrix X.
.TP 8
LDX     (input) INTEGER
The leading dimension of the array X.  LDX >= max(1,N).
.TP 8
FERR    (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).  The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
.TP 8
BERR    (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
.TP 8
WORK    (workspace) COMPLEX array, dimension (2*N)
.TP 8
RWORK   (workspace) REAL array, dimension (N)
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value