1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
.TH CTRSNA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
CTRSNA - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)
.SH SYNOPSIS
.TP 19
SUBROUTINE CTRSNA(
JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
INFO )
.TP 19
.ti +4
CHARACTER
HOWMNY, JOB
.TP 19
.ti +4
INTEGER
INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
REAL
RWORK( * ), S( * ), SEP( * )
.TP 19
.ti +4
COMPLEX
T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
WORK( LDWORK, * )
.SH PURPOSE
CTRSNA estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary).
.SH ARGUMENTS
.TP 8
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
.br
= 'E': for eigenvalues only (S);
.br
= 'V': for eigenvectors only (SEP);
.br
= 'B': for both eigenvalues and eigenvectors (S and SEP).
.TP 8
HOWMNY (input) CHARACTER*1
.br
= 'A': compute condition numbers for all eigenpairs;
.br
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
.TP 8
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the j-th eigenpair, SELECT(j) must be set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
.TP 8
N (input) INTEGER
The order of the matrix T. N >= 0.
.TP 8
T (input) COMPLEX array, dimension (LDT,N)
The upper triangular matrix T.
.TP 8
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
.TP 8
VL (input) COMPLEX array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
CHSEIN or CTREVC.
If JOB = 'V', VL is not referenced.
.TP 8
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
.TP 8
VR (input) COMPLEX array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
CHSEIN or CTREVC.
If JOB = 'V', VR is not referenced.
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
.TP 8
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. Thus S(j), SEP(j), and the j-th columns of VL and VR
all correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
.TP 8
SEP (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array.
If JOB = 'E', SEP is not referenced.
.TP 8
MM (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
.TP 8
M (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
.TP 8
WORK (workspace) COMPLEX array, dimension (LDWORK,N+1)
If JOB = 'E', WORK is not referenced.
.TP 8
LDWORK (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
.TP 8
RWORK (workspace) REAL array, dimension (N)
If JOB = 'E', RWORK is not referenced.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The reciprocal of the condition number of an eigenvalue lambda is
defined as
.br
S(lambda) = |v'*u| / (norm(u)*norm(v))
.br
where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
.br
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
.br
where EPS is the machine precision.
.br
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
.br
T = ( lambda c )
.br
( 0 T22 )
.br
Then the reciprocal condition number is
.br
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
.br
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
.br
An approximate error bound for a computed right eigenvector VR(i)
is given by
.br
EPS * norm(T) / SEP(i)
.br
|