File: dgbbrd.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (103 lines) | stat: -rwxr-xr-x 3,103 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
.TH DGBBRD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DGBBRD - reduce a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation
.SH SYNOPSIS
.TP 19
SUBROUTINE DGBBRD(
VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
LDQ, PT, LDPT, C, LDC, WORK, INFO )
.TP 19
.ti +4
CHARACTER
VECT
.TP 19
.ti +4
INTEGER
INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
.TP 19
.ti +4
DOUBLE
PRECISION AB( LDAB, * ), C( LDC, * ), D( * ), E( * ),
PT( LDPT, * ), Q( LDQ, * ), WORK( * )
.SH PURPOSE
DGBBRD reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation: Q' * A * P = B. 
The routine computes B, and optionally forms Q or P', or computes
Q'*C for a given matrix C.
.br

.SH ARGUMENTS
.TP 8
VECT    (input) CHARACTER*1
Specifies whether or not the matrices Q and P' are to be
formed.
= 'N': do not form Q or P';
.br
= 'Q': form Q only;
.br
= 'P': form P' only;
.br
= 'B': form both.
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A.  N >= 0.
.TP 8
NCC     (input) INTEGER
The number of columns of the matrix C.  NCC >= 0.
.TP 8
KL      (input) INTEGER
The number of subdiagonals of the matrix A. KL >= 0.
.TP 8
KU      (input) INTEGER
The number of superdiagonals of the matrix A. KU >= 0.
.TP 8
AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the m-by-n band matrix A, stored in rows 1 to
KL+KU+1. The j-th column of A is stored in the j-th column of
the array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
On exit, A is overwritten by values generated during the
reduction.
.TP 8
LDAB    (input) INTEGER
The leading dimension of the array A. LDAB >= KL+KU+1.
.TP 8
D       (output) DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B.
.TP 8
E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
The superdiagonal elements of the bidiagonal matrix B.
.TP 8
Q       (output) DOUBLE PRECISION array, dimension (LDQ,M)
If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
If VECT = 'N' or 'P', the array Q is not referenced.
.TP 8
LDQ     (input) INTEGER
The leading dimension of the array Q.
LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
.TP 8
PT      (output) DOUBLE PRECISION array, dimension (LDPT,N)
If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
If VECT = 'N' or 'Q', the array PT is not referenced.
.TP 8
LDPT    (input) INTEGER
The leading dimension of the array PT.
LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
.TP 8
C       (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
On entry, an m-by-ncc matrix C.
On exit, C is overwritten by Q'*C.
C is not referenced if NCC = 0.
.TP 8
LDC     (input) INTEGER
The leading dimension of the array C.
LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
.TP 8
WORK    (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
.TP 8
INFO    (output) INTEGER
= 0:  successful exit.
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.