1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
.TH DGEEV l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DGEEV - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
.SH SYNOPSIS
.TP 18
SUBROUTINE DGEEV(
JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
LDVR, WORK, LWORK, INFO )
.TP 18
.ti +4
CHARACTER
JOBVL, JOBVR
.TP 18
.ti +4
INTEGER
INFO, LDA, LDVL, LDVR, LWORK, N
.TP 18
.ti +4
DOUBLE
PRECISION A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
WI( * ), WORK( * ), WR( * )
.SH PURPOSE
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
.br
A * v(j) = lambda(j) * v(j)
.br
where lambda(j) is its eigenvalue.
.br
The left eigenvector u(j) of A satisfies
.br
u(j)**H * A = lambda(j) * u(j)**H
.br
where u(j)**H denotes the conjugate transpose of u(j).
.br
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
.br
.SH ARGUMENTS
.TP 8
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
.br
= 'V': left eigenvectors of A are computed.
.TP 8
JOBVR (input) CHARACTER*1
.br
= 'N': right eigenvectors of A are not computed;
.br
= 'V': right eigenvectors of A are computed.
.TP 8
N (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary part
first.
.TP 8
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order
as their eigenvalues.
If JOBVL = 'N', VL is not referenced.
If the j-th eigenvalue is real, then u(j) = VL(:,j),
the j-th column of VL.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
.br
u(j+1) = VL(:,j) - i*VL(:,j+1).
.TP 8
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1; if
JOBVL = 'V', LDVL >= N.
.TP 8
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order
as their eigenvalues.
If JOBVR = 'N', VR is not referenced.
If the j-th eigenvalue is real, then v(j) = VR(:,j),
the j-th column of VR.
If the j-th and (j+1)-st eigenvalues form a complex
conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
.br
v(j+1) = VR(:,j) - i*VR(:,j+1).
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1; if
JOBVR = 'V', LDVR >= N.
.TP 8
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,3*N), and
if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.br
> 0: if INFO = i, the QR algorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elements i+1:N of WR and WI contain eigenvalues which
have converged.
|