1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
.TH DGGSVP l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DGGSVP - compute orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0
.SH SYNOPSIS
.TP 19
SUBROUTINE DGGSVP(
JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
IWORK, TAU, WORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBQ, JOBU, JOBV
.TP 19
.ti +4
INTEGER
INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
.TP 19
.ti +4
DOUBLE
PRECISION TOLA, TOLB
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
.SH PURPOSE
DGGSVP computes orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 )
.br
M-K-L ( 0 0 0 )
.br
N-K-L K L
.br
= K ( 0 A12 A13 ) if M-K-L < 0;
.br
M-K ( 0 0 A23 )
.br
N-K-L K L
.br
V'*B*Q = L ( 0 0 B13 )
.br
P-L ( 0 0 0 )
.br
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the
transpose of Z.
.br
This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
DGGSVD.
.br
.SH ARGUMENTS
.TP 8
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
.br
= 'N': U is not computed.
.TP 8
JOBV (input) CHARACTER*1
.br
= 'V': Orthogonal matrix V is computed;
.br
= 'N': V is not computed.
.TP 8
JOBQ (input) CHARACTER*1
.br
= 'Q': Orthogonal matrix Q is computed;
.br
= 'N': Q is not computed.
.TP 8
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
.TP 8
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
.TP 8
N (input) INTEGER
The number of columns of the matrices A and B. N >= 0.
.TP 8
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
.TP 8
TOLA (input) DOUBLE PRECISION
TOLB (input) DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
.TP 8
K (output) INTEGER
L (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
.TP 8
U (output) DOUBLE PRECISION array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
.TP 8
LDU (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
.TP 8
V (output) DOUBLE PRECISION array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
.TP 8
LDV (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
.TP 8
Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
.TP 8
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
.TP 8
IWORK (workspace) INTEGER array, dimension (N)
.TP 8
TAU (workspace) DOUBLE PRECISION array, dimension (N)
.TP 8
WORK (workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P))
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.SH FURTHER DETAILS
The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.
|