File: dgtsvx.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (204 lines) | stat: -rwxr-xr-x 6,990 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
.TH DGTSVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DGTSVX - use the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B,
.SH SYNOPSIS
.TP 19
SUBROUTINE DGTSVX(
FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
WORK, IWORK, INFO )
.TP 19
.ti +4
CHARACTER
FACT, TRANS
.TP 19
.ti +4
INTEGER
INFO, LDB, LDX, N, NRHS
.TP 19
.ti +4
DOUBLE
PRECISION RCOND
.TP 19
.ti +4
INTEGER
IPIV( * ), IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
FERR( * ), WORK( * ), X( LDX, * )
.SH PURPOSE
DGTSVX uses the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B, where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
matrices.
.br

Error bounds on the solution and a condition estimate are also
provided.
.br

.SH DESCRIPTION
The following steps are performed:
.br

1. If FACT = 'N', the LU decomposition is used to factor the matrix A
   as A = L * U, where L is a product of permutation and unit lower
   bidiagonal matrices and U is upper triangular with nonzeros in
   only the main diagonal and first two superdiagonals.
.br

2. If some U(i,i)=0, so that U is exactly singular, then the routine
   returns with INFO = i. Otherwise, the factored form of A is used
   to estimate the condition number of the matrix A.  If the
   reciprocal of the condition number is less than machine precision,
   INFO = N+1 is returned as a warning, but the routine still goes on
   to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form
   of A.
.br

4. Iterative refinement is applied to improve the computed solution
   matrix and calculate error bounds and backward error estimates
   for it.
.br

.SH ARGUMENTS
.TP 8
FACT    (input) CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
will not be modified.
= 'N':  The matrix will be copied to DLF, DF, and DUF
and factored.
.TP 8
TRANS   (input) CHARACTER*1
Specifies the form of the system of equations:
.br
= 'N':  A * X = B     (No transpose)
.br
= 'T':  A**T * X = B  (Transpose)
.br
= 'C':  A**H * X = B  (Conjugate transpose = Transpose)
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.
.TP 8
DL      (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
.TP 8
D       (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of A.
.TP 8
DU      (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
.TP 8
DLF     (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DLF is an input argument and on entry
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A as computed by DGTTRF.

If FACT = 'N', then DLF is an output argument and on exit
contains the (n-1) multipliers that define the matrix L from
the LU factorization of A.
.TP 8
DF      (input or output) DOUBLE PRECISION array, dimension (N)
If FACT = 'F', then DF is an input argument and on entry
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

If FACT = 'N', then DF is an output argument and on exit
contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
.TP 8
DUF     (input or output) DOUBLE PRECISION array, dimension (N-1)
If FACT = 'F', then DUF is an input argument and on entry
contains the (n-1) elements of the first superdiagonal of U.

If FACT = 'N', then DUF is an output argument and on exit
contains the (n-1) elements of the first superdiagonal of U.
.TP 8
DU2     (input or output) DOUBLE PRECISION array, dimension (N-2)
If FACT = 'F', then DU2 is an input argument and on entry
contains the (n-2) elements of the second superdiagonal of
U.

If FACT = 'N', then DU2 is an output argument and on exit
contains the (n-2) elements of the second superdiagonal of
U.
.TP 8
IPIV    (input or output) INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains the pivot indices from the LU factorization of A as
computed by DGTTRF.

If FACT = 'N', then IPIV is an output argument and on exit
contains the pivot indices from the LU factorization of A;
row i of the matrix was interchanged with row IPIV(i).
IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
a row interchange was not required.
.TP 8
B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
.TP 8
X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
.TP 8
LDX     (input) INTEGER
The leading dimension of the array X.  LDX >= max(1,N).
.TP 8
RCOND   (output) DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A.  If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision.  This condition is indicated by a return code of
INFO > 0.
.TP 8
FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).  The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
.TP 8
BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
.TP 8
WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
.TP 8
IWORK   (workspace) INTEGER array, dimension (N)
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, and i is
.br
<= N:  U(i,i) is exactly zero.  The factorization
has not been completed unless i = N, but the
factor U is exactly singular, so the solution
and error bounds could not be computed.
RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision.  Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.