File: dlaqps.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (91 lines) | stat: -rwxr-xr-x 2,643 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
.TH DLAQPS l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLAQPS - compute a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3
.SH SYNOPSIS
.TP 19
SUBROUTINE DLAQPS(
M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
VN2, AUXV, F, LDF )
.TP 19
.ti +4
INTEGER
KB, LDA, LDF, M, N, NB, OFFSET
.TP 19
.ti +4
INTEGER
JPVT( * )
.TP 19
.ti +4
DOUBLE
PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
VN1( * ), VN2( * )
.SH PURPOSE
DLAQPS computes a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3. It tries to factorize NB columns from A starting from the row OFFSET+1, and updates all
of the matrix with Blas-3 xGEMM.
.br

In some cases, due to catastrophic cancellations, it cannot
factorize NB columns.  Hence, the actual number of factorized
columns is returned in KB.
.br

Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

.SH ARGUMENTS
.TP 8
M       (input) INTEGER
The number of rows of the matrix A. M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A. N >= 0
.TP 8
OFFSET  (input) INTEGER
The number of rows of A that have been factorized in
previous steps.
.TP 8
NB      (input) INTEGER
The number of columns to factorize.
.TP 8
KB      (output) INTEGER
The number of columns actually factorized.
.TP 8
A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, block A(OFFSET+1:M,1:KB) is the triangular
.br
factor obtained and block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
been updated.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
JPVT    (input/output) INTEGER array, dimension (N)
JPVT(I) = K <==> Column K of the full matrix A has been
permuted into position I in AP.
.TP 8
TAU     (output) DOUBLE PRECISION array, dimension (KB)
The scalar factors of the elementary reflectors.
.TP 8
VN1     (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
.TP 8
VN2     (input/output) DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
.TP 8
AUXV    (input/output) DOUBLE PRECISION array, dimension (NB)
Auxiliar vector.
.TP 8
F       (input/output) DOUBLE PRECISION array, dimension (LDF,NB)
Matrix F' = L*Y'*A.
.TP 8
LDF     (input) INTEGER
The leading dimension of the array F. LDF >= max(1,N).
.SH FURTHER DETAILS
Based on contributions by
.br
  G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  X. Sun, Computer Science Dept., Duke University, USA
.br