File: dlarfg.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (63 lines) | stat: -rwxr-xr-x 1,365 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
.TH DLARFG l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLARFG - generate a real elementary reflector H of order n, such that  H * ( alpha ) = ( beta ), H' * H = I
.SH SYNOPSIS
.TP 19
SUBROUTINE DLARFG(
N, ALPHA, X, INCX, TAU )
.TP 19
.ti +4
INTEGER
INCX, N
.TP 19
.ti +4
DOUBLE
PRECISION ALPHA, TAU
.TP 19
.ti +4
DOUBLE
PRECISION X( * )
.SH PURPOSE
DLARFG generates a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I.           (   x   )   (   0  )
.br

where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
.br

      H = I - tau * ( 1 ) * ( 1 v' ) ,
.br
                    ( v )
.br

where tau is a real scalar and v is a real (n-1)-element
.br
vector.
.br

If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
.br

Otherwise  1 <= tau <= 2.
.br

.SH ARGUMENTS
.TP 8
N       (input) INTEGER
The order of the elementary reflector.
.TP 8
ALPHA   (input/output) DOUBLE PRECISION
On entry, the value alpha.
On exit, it is overwritten with the value beta.
.TP 8
X       (input/output) DOUBLE PRECISION array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
.TP 8
INCX    (input) INTEGER
The increment between elements of X. INCX > 0.
.TP 8
TAU     (output) DOUBLE PRECISION
The value tau.