1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
.TH DLARFG l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLARFG - generate a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I
.SH SYNOPSIS
.TP 19
SUBROUTINE DLARFG(
N, ALPHA, X, INCX, TAU )
.TP 19
.ti +4
INTEGER
INCX, N
.TP 19
.ti +4
DOUBLE
PRECISION ALPHA, TAU
.TP 19
.ti +4
DOUBLE
PRECISION X( * )
.SH PURPOSE
DLARFG generates a real elementary reflector H of order n, such that H * ( alpha ) = ( beta ), H' * H = I. ( x ) ( 0 )
.br
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
.br
H = I - tau * ( 1 ) * ( 1 v' ) ,
.br
( v )
.br
where tau is a real scalar and v is a real (n-1)-element
.br
vector.
.br
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
.br
Otherwise 1 <= tau <= 2.
.br
.SH ARGUMENTS
.TP 8
N (input) INTEGER
The order of the elementary reflector.
.TP 8
ALPHA (input/output) DOUBLE PRECISION
On entry, the value alpha.
On exit, it is overwritten with the value beta.
.TP 8
X (input/output) DOUBLE PRECISION array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
.TP 8
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
.TP 8
TAU (output) DOUBLE PRECISION
The value tau.
|