1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
.TH DLARZT l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLARZT - form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors
.SH SYNOPSIS
.TP 19
SUBROUTINE DLARZT(
DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
.TP 19
.ti +4
CHARACTER
DIRECT, STOREV
.TP 19
.ti +4
INTEGER
K, LDT, LDV, N
.TP 19
.ti +4
DOUBLE
PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
.SH PURPOSE
DLARZT forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
.br
H = I - V * T * V'
.br
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
.br
H = I - V' * T * V
.br
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
.SH ARGUMENTS
.TP 8
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
.br
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
.br
= 'B': H = H(k) . . . H(2) H(1) (Backward)
.TP 8
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
.br
= 'R': rowwise
.TP 8
N (input) INTEGER
The order of the block reflector H. N >= 0.
.TP 8
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
.TP 8
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
.TP 8
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
.TP 8
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
.TP 8
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
.TP 8
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
.SH FURTHER DETAILS
Based on contributions by
.br
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
.br
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
.br
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
.br
. . .
.br
. . .
.br
1 . .
.br
1 .
.br
1
.br
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
.br
( v1 v2 v3 )
.br
( v1 v2 v3 )
.br
V = ( v1 v2 v3 )
.br
( v1 v2 v3 )
.br
( v1 v2 v3 )
.br
|