File: dlasd5.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (61 lines) | stat: -rwxr-xr-x 1,800 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
.TH DLASD5 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLASD5 - subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix  diag( D ) * diag( D ) + RHO * Z * transpose(Z) 
.SH SYNOPSIS
.TP 19
SUBROUTINE DLASD5(
I, D, Z, DELTA, RHO, DSIGMA, WORK )
.TP 19
.ti +4
INTEGER
I
.TP 19
.ti +4
DOUBLE
PRECISION DSIGMA, RHO
.TP 19
.ti +4
DOUBLE
PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
.SH PURPOSE
This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . 
The diagonal entries in the array D are assumed to satisfy

           0 <= D(i) < D(j)  for  i < j .
.br

We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
.br

.SH ARGUMENTS
.TP 7
I      (input) INTEGER
The index of the eigenvalue to be computed.  I = 1 or I = 2.
.TP 7
D      (input) DOUBLE PRECISION array, dimension ( 2 )
The original eigenvalues.  We assume 0 <= D(1) < D(2).
.TP 7
Z      (input) DOUBLE PRECISION array, dimension ( 2 )
The components of the updating vector.
.TP 7
DELTA  (output) DOUBLE PRECISION array, dimension ( 2 )
Contains (D(j) - lambda_I) in its  j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
.TP 7
RHO    (input) DOUBLE PRECISION
The scalar in the symmetric updating formula.

DSIGMA (output) DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
.TP 7
WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its  j-th component.
.SH FURTHER DETAILS
Based on contributions by
.br
   Ren-Cang Li, Computer Science Division, University of California
   at Berkeley, USA
.br