1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
.TH DLASD7 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DLASD7 - merge the two sets of singular values together into a single sorted set
.SH SYNOPSIS
.TP 19
SUBROUTINE DLASD7(
ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
C, S, INFO )
.TP 19
.ti +4
INTEGER
GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
NR, SQRE
.TP 19
.ti +4
DOUBLE
PRECISION ALPHA, BETA, C, S
.TP 19
.ti +4
INTEGER
GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
IDXQ( * ), PERM( * )
.TP 19
.ti +4
DOUBLE
PRECISION D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
ZW( * )
.SH PURPOSE
DLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular
values are close together or if there is a tiny entry in the Z
vector. For each such occurrence the order of the related
secular equation problem is reduced by one.
.br
DLASD7 is called from DLASD6.
.br
.SH ARGUMENTS
.TP 8
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed
in compact form, as follows:
.br
= 0: Compute singular values only.
.br
= 1: Compute singular vectors of upper
bidiagonal matrix in compact form.
.TP 7
NL (input) INTEGER
The row dimension of the upper block. NL >= 1.
.TP 7
NR (input) INTEGER
The row dimension of the lower block. NR >= 1.
.TP 7
SQRE (input) INTEGER
= 0: the lower block is an NR-by-NR square matrix.
.br
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
.TP 7
K (output) INTEGER
Contains the dimension of the non-deflated matrix, this is
the order of the related secular equation. 1 <= K <=N.
.TP 7
D (input/output) DOUBLE PRECISION array, dimension ( N )
On entry D contains the singular values of the two submatrices
to be combined. On exit D contains the trailing (N-K) updated
singular values (those which were deflated) sorted into
increasing order.
.TP 7
Z (output) DOUBLE PRECISION array, dimension ( M )
On exit Z contains the updating row vector in the secular
equation.
.TP 7
ZW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for Z.
.TP 7
VF (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VF(1:NL+1) contains the first components of all
.br
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
.TP 7
VFW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VF.
.TP 7
VL (input/output) DOUBLE PRECISION array, dimension ( M )
On entry, VL(1:NL+1) contains the last components of all
.br
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors
of the lower block. On exit, VL contains the last components
of all right singular vectors of the bidiagonal matrix.
.TP 7
VLW (workspace) DOUBLE PRECISION array, dimension ( M )
Workspace for VL.
.TP 7
ALPHA (input) DOUBLE PRECISION
Contains the diagonal element associated with the added row.
.TP 7
BETA (input) DOUBLE PRECISION
Contains the off-diagonal element associated with the added
row.
DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
Contains a copy of the diagonal elements (K-1 singular values
and one zero) in the secular equation.
.TP 7
IDX (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to sort the contents of
D into ascending order.
.TP 7
IDXP (workspace) INTEGER array, dimension ( N )
This will contain the permutation used to place deflated
values of D at the end of the array. On output IDXP(2:K)
.br
points to the nondeflated D-values and IDXP(K+1:N)
points to the deflated singular values.
.TP 7
IDXQ (input) INTEGER array, dimension ( N )
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that entries in
the first half of this permutation must first be moved one
position backward; and entries in the second half
must first have NL+1 added to their values.
.TP 7
PERM (output) INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each singular block. Not referenced if ICOMPQ = 0.
GIVPTR (output) INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL (input) INTEGER
The leading dimension of GIVCOL, must be at least N.
GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM (input) INTEGER
The leading dimension of GIVNUM, must be at least N.
.TP 7
C (output) DOUBLE PRECISION
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
.TP 7
S (output) DOUBLE PRECISION
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
.TP 7
INFO (output) INTEGER
= 0: successful exit.
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.SH FURTHER DETAILS
Based on contributions by
.br
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
.br
|