File: dpptrf.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (81 lines) | stat: -rwxr-xr-x 1,990 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
.TH DPPTRF l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DPPTRF - compute the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format
.SH SYNOPSIS
.TP 19
SUBROUTINE DPPTRF(
UPLO, N, AP, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, N
.TP 19
.ti +4
DOUBLE
PRECISION AP( * )
.SH PURPOSE
DPPTRF computes the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format. 
The factorization has the form
.br
   A = U**T * U,  if UPLO = 'U', or
.br
   A = L  * L**T,  if UPLO = 'L',
.br
where U is an upper triangular matrix and L is lower triangular.

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.

On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
.SH FURTHER DETAILS
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
.br

Two-dimensional storage of the symmetric matrix A:
.br

   a11 a12 a13 a14
.br
       a22 a23 a24
.br
           a33 a34     (aij = aji)
.br
               a44
.br

Packed storage of the upper triangle of A:
.br

AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]