1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
.TH DSPGVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DSPGVX - compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
.SH SYNOPSIS
.TP 19
SUBROUTINE DSPGVX(
ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
IFAIL, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, RANGE, UPLO
.TP 19
.ti +4
INTEGER
IL, INFO, ITYPE, IU, LDZ, M, N
.TP 19
.ti +4
DOUBLE
PRECISION ABSTOL, VL, VU
.TP 19
.ti +4
INTEGER
IFAIL( * ), IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
Z( LDZ, * )
.SH PURPOSE
DSPGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.
.br
.SH ARGUMENTS
.TP 8
ITYPE (input) INTEGER
Specifies the problem type to be solved:
.br
= 1: A*x = (lambda)*B*x
.br
= 2: A*B*x = (lambda)*x
.br
= 3: B*A*x = (lambda)*x
.TP 8
JOBZ (input) CHARACTER*1
.br
= 'N': Compute eigenvalues only;
.br
= 'V': Compute eigenvalues and eigenvectors.
.TP 8
RANGE (input) CHARACTER*1
.br
= 'A': all eigenvalues will be found.
.br
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
.TP 8
UPLO (input) CHARACTER*1
.br
= 'U': Upper triangle of A and B are stored;
.br
= 'L': Lower triangle of A and B are stored.
.TP 8
N (input) INTEGER
The order of the matrix pencil (A,B). N >= 0.
.TP 8
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
.TP 8
BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
.TP 8
VL (input) DOUBLE PRECISION
VU (input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
.TP 8
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
.TP 8
ABSTOL (input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than
or equal to zero, then EPS*|T| will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
.TP 8
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
.TP 8
W (output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
.TP 8
Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
.TP 8
IWORK (workspace) INTEGER array, dimension (5*N)
.TP 8
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: DPPTRF or DSPEVX returned an error code:
.br
<= N: if INFO = i, DSPEVX failed to converge;
i eigenvectors failed to converge. Their indices
are stored in array IFAIL.
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
.SH FURTHER DETAILS
Based on contributions by
.br
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|