File: dsptrd.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (102 lines) | stat: -rwxr-xr-x 2,983 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
.TH DSPTRD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DSPTRD - reduce a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal similarity transformation
.SH SYNOPSIS
.TP 19
SUBROUTINE DSPTRD(
UPLO, N, AP, D, E, TAU, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, N
.TP 19
.ti +4
DOUBLE
PRECISION AP( * ), D( * ), E( * ), TAU( * )
.SH PURPOSE
DSPTRD reduces a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T. 
.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
D       (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
.TP 8
E       (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
.TP 8
TAU     (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
.br

   Q = H(n-1) . . . H(2) H(1).
.br

Each H(i) has the form
.br

   H(i) = I - tau * v * v'
.br

where tau is a real scalar, and v is a real vector with
.br
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
.br

If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
.br

   Q = H(1) H(2) . . . H(n-1).
.br

Each H(i) has the form
.br

   H(i) = I - tau * v * v'
.br

where tau is a real scalar, and v is a real vector with
.br
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).
.br