File: dtgsja.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (314 lines) | stat: -rwxr-xr-x 7,946 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
.TH DTGSJA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DTGSJA - compute the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matrices A and B
.SH SYNOPSIS
.TP 19
SUBROUTINE DTGSJA(
JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
Q, LDQ, WORK, NCYCLE, INFO )
.TP 19
.ti +4
CHARACTER
JOBQ, JOBU, JOBV
.TP 19
.ti +4
INTEGER
INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
NCYCLE, P
.TP 19
.ti +4
DOUBLE
PRECISION TOLA, TOLB
.TP 19
.ti +4
DOUBLE
PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
BETA( * ), Q( LDQ, * ), U( LDU, * ),
V( LDV, * ), WORK( * )
.SH PURPOSE
DTGSJA computes the generalized singular value decomposition (GSVD) of two real upper triangular (or trapezoidal) matrices A and B. 
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine DGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
.br

             N-K-L  K    L
.br
   A =    K ( 0    A12  A13 ) if M-K-L >= 0;
.br
          L ( 0     0   A23 )
.br
      M-K-L ( 0     0    0  )
.br

           N-K-L  K    L
.br
   A =  K ( 0    A12  A13 ) if M-K-L < 0;
.br
      M-K ( 0     0   A23 )
.br

           N-K-L  K    L
.br
   B =  L ( 0     0   B13 )
.br
      P-L ( 0     0    0  )
.br

where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
.br

On exit,
.br

            U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),
.br

where U, V and Q are orthogonal matrices, Z' denotes the transpose
of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:

If M-K-L >= 0,
.br

                    K  L
.br
       D1 =     K ( I  0 )
.br
                L ( 0  C )
.br
            M-K-L ( 0  0 )
.br

                  K  L
.br
       D2 = L   ( 0  S )
.br
            P-L ( 0  0 )
.br

               N-K-L  K    L
.br
  ( 0 R ) = K (  0   R11  R12 ) K
.br
            L (  0    0   R22 ) L
.br

where
.br

  C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
.br
  S = diag( BETA(K+1),  ... , BETA(K+L) ),
.br
  C**2 + S**2 = I.
.br

  R is stored in A(1:K+L,N-K-L+1:N) on exit.
.br

If M-K-L < 0,
.br

               K M-K K+L-M
.br
    D1 =   K ( I  0    0   )
.br
         M-K ( 0  C    0   )
.br

                 K M-K K+L-M
.br
    D2 =   M-K ( 0  S    0   )
.br
         K+L-M ( 0  0    I   )
.br
           P-L ( 0  0    0   )
.br

               N-K-L  K   M-K  K+L-M
.br

          M-K ( 0     0   R22  R23  )
.br
        K+L-M ( 0     0    0   R33  )
.br

where
.br
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
.br
S = diag( BETA(K+1),  ... , BETA(M) ),
.br
C**2 + S**2 = I.
.br

R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
    (  0  R22 R23 )
.br
in B(M-K+1:L,N+M-K-L+1:N) on exit.
.br

The computation of the orthogonal transformation matrices U, V or Q
is optional.  These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.
.br

.SH ARGUMENTS
.TP 8
JOBU    (input) CHARACTER*1
= 'U':  U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I':  U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N':  U is not computed.
.TP 8
JOBV    (input) CHARACTER*1
.br
= 'V':  V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I':  V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N':  V is not computed.
.TP 8
JOBQ    (input) CHARACTER*1
.br
= 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I':  Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N':  Q is not computed.
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
P       (input) INTEGER
The number of rows of the matrix B.  P >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrices A and B.  N >= 0.
.TP 8
K       (input) INTEGER
L       (input) INTEGER
K and L specify the subblocks in the input matrices A and B:
.br
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by DTGSJA.
See Further details.
.TP 8
A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R.  See Purpose for details.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R.  See Purpose for details.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
.TP 8
TOLA    (input) DOUBLE PRECISION
TOLB    (input) DOUBLE PRECISION
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MAZHEPS,
TOLB = max(P,N)*norm(B)*MAZHEPS.
.TP 8
ALPHA   (output) DOUBLE PRECISION array, dimension (N)
BETA    (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
.br
BETA(1:K)  = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
.br
BETA(K+1:K+L)  = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
.br
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
.br
BETA(K+L+1:N)  = 0.
.TP 8
U       (input/output) DOUBLE PRECISION array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
.TP 8
LDU     (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
.TP 8
V       (input/output) DOUBLE PRECISION array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
.TP 8
LDV     (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
.TP 8
Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
.TP 8
LDQ     (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
.TP 8
WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
.TP 8
NCYCLE  (output) INTEGER
The number of cycles required for convergence.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.br
= 1:  the procedure does not converge after MAXIT cycles.
.SH PARAMETERS
.TP 8
MAXIT   INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1.

Further Details
===============

DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:

U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,

where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
of Z.  C1 and S1 are diagonal matrices satisfying

C1**2 + S1**2 = I,

and R1 is an L-by-L nonsingular upper triangular matrix.