File: dtgsyl.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (218 lines) | stat: -rwxr-xr-x 6,891 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
.TH DTGSYL l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
DTGSYL - solve the generalized Sylvester equation
.SH SYNOPSIS
.TP 19
SUBROUTINE DTGSYL(
TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
IWORK, INFO )
.TP 19
.ti +4
CHARACTER
TRANS
.TP 19
.ti +4
INTEGER
IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
LWORK, M, N
.TP 19
.ti +4
DOUBLE
PRECISION DIF, SCALE
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
D( LDD, * ), E( LDE, * ), F( LDF, * ),
WORK( * )
.SH PURPOSE
DTGSYL solves the generalized Sylvester equation: 
            A * R - L * B = scale * C                 (1)
            D * R - L * E = scale * F
.br

where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with real entries. (A, D) and (B, E) must be in
generalized (real) Schur canonical form, i.e. A, B are upper quasi
triangular and D, E are upper triangular.
.br

The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
.br

In matrix notation (1) is equivalent to solve  Zx = scale b, where
Z is defined as
.br

           Z = [ kron(In, A)  -kron(B', Im) ]         (2)
               [ kron(In, D)  -kron(E', Im) ].
.br

Here Ik is the identity matrix of size k and X' is the transpose of
X. kron(X, Y) is the Kronecker product between the matrices X and Y.

If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,
which is equivalent to solve for R and L in
.br

            A' * R  + D' * L   = scale *  C           (3)
            R  * B' + L  * E'  = scale * (-F)
.br

This case (TRANS = 'T') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using DLACON.
.br

If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z. See [1-2] for more
information.
.br

This is a level 3 BLAS algorithm.
.br

.SH ARGUMENTS
.TP 8
TRANS   (input) CHARACTER*1
= 'N', solve the generalized Sylvester equation (1).
= 'T', solve the 'transposed' system (3).
.TP 8
IJOB    (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
.br
=1: The functionality of 0 and 3.
.br
=2: The functionality of 0 and 4.
.br
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy IJOB  = 1 is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
( DGECON on sub-systems is used ).
Not referenced if TRANS = 'T'.
.TP 8
M       (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
.TP 8
N       (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
.TP 8
A       (input) DOUBLE PRECISION array, dimension (LDA, M)
The upper quasi triangular matrix A.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
.TP 8
B       (input) DOUBLE PRECISION array, dimension (LDB, N)
The upper quasi triangular matrix B.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
.TP 8
C       (input/output) DOUBLE PRECISION array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
.TP 8
LDC     (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
.TP 8
D       (input) DOUBLE PRECISION array, dimension (LDD, M)
The upper triangular matrix D.
.TP 8
LDD     (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
.TP 8
E       (input) DOUBLE PRECISION array, dimension (LDE, N)
The upper triangular matrix E.
.TP 8
LDE     (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
.TP 8
F       (input/output) DOUBLE PRECISION array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
.TP 8
LDF     (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
.TP 8
DIF     (output) DOUBLE PRECISION
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'T', DIF is not touched.
.TP 8
SCALE   (output) DOUBLE PRECISION
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If SCALE = 0, C and F hold the
solutions R and L, respectively, to the homogeneous system
with C = F = 0. Normally, SCALE = 1.
.TP 8
WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
If IJOB = 0, WORK is not referenced.  Otherwise,
on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
IWORK   (workspace) INTEGER array, dimension (M+N+6)
.TP 8
INFO    (output) INTEGER
=0: successful exit
.br
<0: If INFO = -i, the i-th argument had an illegal value.
.br
>0: (A, D) and (B, E) have common or close eigenvalues.
.SH FURTHER DETAILS
Based on contributions by
.br
   Bo Kagstrom and Peter Poromaa, Department of Computing Science,
   Umea University, S-901 87 Umea, Sweden.
.br

[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
    for Solving the Generalized Sylvester Equation and Estimating the
    Separation between Regular Matrix Pairs, Report UMINF - 93.23,
    Department of Computing Science, Umea University, S-901 87 Umea,
    Sweden, December 1993, Revised April 1994, Also as LAPACK Working
    Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
    No 1, 1996.
.br

[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
    Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
    Appl., 15(4):1045-1060, 1994
.br

[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
    Condition Estimators for Solving the Generalized Sylvester
    Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
    July 1989, pp 745-751.
.br